ImageVerifierCode 换一换
格式:DOC , 页数:7 ,大小:133.50KB ,
资源ID:693714      下载积分:4 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-693714-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(《学案精编》高中数学人教B版必修5学案:1.1.1 正弦定理(一).doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

《学案精编》高中数学人教B版必修5学案:1.1.1 正弦定理(一).doc

1、第一章解三角形1.1正弦定理和余弦定理11.1正弦定理(一)自主学习 知识梳理1一般地,把三角形的三个角A,B,C和它们的对边a,b,c叫做三角形的_已知三角形的几个元素求其他元素的过程叫做_2在RtABC中,C90,则有:(1)AB_,0A90,0B90;(2)a2b2_(勾股定理);(3)sin A_,cos A_,tan A_,sin B_,cos B_,tan B_;(4)_,_,_.3正弦定理:在一个三角形中,各边的长和它所对角的正弦的比相等,即_,这个比值是_ 自主探究已知ABC的三个内角A、B、C及对应的三边a、b、c,试用向量法证明正弦定理对点讲练知识点一已知两角和一边解三角形

2、例1在ABC中,a5,B45,C105,解三角形总结已知一个三角形的三边和三内角这六个量中的三个量,其中至少有一个是边,可以求解其余的三个量变式训练1在ABC中,已知a2,A30,B45,解三角形知识点二已知两边及其中一边的对角解三角形例2在ABC中,a2,b6,A30,解三角形总结已知三角形两边和其中一边的对角,解三角形时,首先求出另一边的对角的正弦值,根据该正弦值求角时,需对角的情况加以讨论变式训练2在ABC中,角A、B、C所对的边分别为a、b、c,已知A60,a,b1,则c等于()A1 B2 C.1 D.知识点三已知两边及其中一边的对角,判断三角形解的个数例3不解三角形,判断下列三角形解

3、的个数(1)a5,b4,A120;(2)a9,b10,A60;(3)c50,b72,C135.总结已知三角形的两边及其中一边的对角,此类问题可能出现一解、两解或无解的情况,具体判断方法是:可用三角形中大边对大角定理,也可作图判断变式训练3不解三角形,判断下列三角形解的个数(1)a7,b14,A30;(2)a30,b25,A150;(3)a7,b9,A45.1利用正弦定理可以解决两类有关三角形的问题:(1)已知两角和任一边,求其它两边和一角(2)已知两边和其中一边的对角,求另一边和两角2已知两边和其中一边的对角,求第三边和其它两个角,这时三角形解的情况比较复杂,可能无解,可能一解或两解例如:已知

4、a、b和A,用正弦定理求B时的各种情况.A为锐角absin Aabsin Absin Aab无解一解(锐角)课时作业一、选择题1在ABC中,下列等式中总能成立的是()Aasin Absin B Bbsin Ccsin ACabsin Cbcsin B Dasin Ccsin A2在ABC中,已知a18,b16,A150,则这个三角形解的情况是()A有两个解 B有一个解C无解 D不能确定3在ABC中,已知a8,B60,C75,则b等于()A4 B4 C4 D.4在ABC中,角A、B、C所对的边分别为a、b、c,如果ca,B30,那么角C等于()A120 B105 C90 D755在ABC中,根据

5、下列条件解三角形,其中有两解的是()Ab10,A45,C70Ba30,b25,A150Ca7,b8,A98Da14,b16,A45二、填空题6在ABC中,AC,BC2,B60,则C_.7在ABC中,已知a、b、c分别为内角A、B、C的对边,若b2a,BA60,则A_.8在ABC中,ax,b2,B45,若三角形有两解,则x的取值范围是_三、解答题9在ABC中,若a2,A30,讨论当b为何值时(或在什么范围内),三角形有一解,有两解或无解?10在锐角三角形ABC中,A2B,a、b、c所对的角分别为A、B、C,求的取值范围第一章解三角形1.1正弦定理和余弦定理11.1正弦定理(一)知识梳理1元素解三

6、角形2(1)90(2)c2(3)(4)ccc3.三角形外接圆的直径2R自主探究证明(1)若ABC为直角三角形,不妨设C为直角如图所示,根据正弦函数的定义,sin A,sin B,所以c2R(2R为外接圆直径)C90,sin C1,c2R.2R.(2)若ABC为锐角三角形,过A点作单位向量i,则有:ii()ii,i,i0,ii,即ccos(90A)acos(90C),csin Aasin C,.同理可证:;.(3)若ABC为钝角三角形,可仿(2)证明对点讲练例1解由三角形内角和定理知ABC180,所以A180(BC)180(45105)30.由正弦定理,得ba55;ca555()变式训练1解,b

7、4.C180(AB)180(3045)105,c22.例2解a2,b6,ab,A30bsin A,所以本题有两解,由正弦定理得:sin B,故B60或120.当B60时,C90,c4;当B120时,C30,ca2.所以B60,C90,c4或B120,C30,c2.变式训练2B由正弦定理,可得,sin B,故B30或150.由ab,得AB,B30,故C90,由勾股定理得c2.例3解(1)sin Bsin 120,所以三角形有一解(2)sin Bsin 60,而1,所以当B为锐角时,满足sin B的角有60B90,故对应的钝角B有90B120,也满足ABsin C,所以B45,所以BC180,故三

8、角形无解变式训练3解(1)A30,absin A,故三角形有一解(2)A15090,a30b25,故三角形有一解(3)A45,bsin 45ab,即AB,且A150,只有一解;对于C,ab,即AB,且A98,无解675解析由正弦定理,sin A.BC2AC,A为锐角,A45.C75.730解析b2asin B2sin A,又BA60,sin(A60)2sin A,即sin Acos 60cos Asin 602sin A,化简得:sin Acos A,tan A,A30.82x2解析因三角形有两解,所以asin Bba,即x2x,2x2.9解当a2a,b4时,无解;当ab或absin A,即b2或b4时,有一解;当bsin Aab,即2b4时,有两解10解在锐角三角形ABC中,A、B、C90,即30B45.由正弦定理知:2cos B(,),故所求的范围是(,)

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3