收藏 分享(赏)

2022年京改版八年级数学上册第十二章三角形同步测试练习题(含答案解析).docx

上传人:a**** 文档编号:693707 上传时间:2025-12-13 格式:DOCX 页数:25 大小:602.59KB
下载 相关 举报
2022年京改版八年级数学上册第十二章三角形同步测试练习题(含答案解析).docx_第1页
第1页 / 共25页
2022年京改版八年级数学上册第十二章三角形同步测试练习题(含答案解析).docx_第2页
第2页 / 共25页
2022年京改版八年级数学上册第十二章三角形同步测试练习题(含答案解析).docx_第3页
第3页 / 共25页
2022年京改版八年级数学上册第十二章三角形同步测试练习题(含答案解析).docx_第4页
第4页 / 共25页
2022年京改版八年级数学上册第十二章三角形同步测试练习题(含答案解析).docx_第5页
第5页 / 共25页
2022年京改版八年级数学上册第十二章三角形同步测试练习题(含答案解析).docx_第6页
第6页 / 共25页
2022年京改版八年级数学上册第十二章三角形同步测试练习题(含答案解析).docx_第7页
第7页 / 共25页
2022年京改版八年级数学上册第十二章三角形同步测试练习题(含答案解析).docx_第8页
第8页 / 共25页
2022年京改版八年级数学上册第十二章三角形同步测试练习题(含答案解析).docx_第9页
第9页 / 共25页
2022年京改版八年级数学上册第十二章三角形同步测试练习题(含答案解析).docx_第10页
第10页 / 共25页
2022年京改版八年级数学上册第十二章三角形同步测试练习题(含答案解析).docx_第11页
第11页 / 共25页
2022年京改版八年级数学上册第十二章三角形同步测试练习题(含答案解析).docx_第12页
第12页 / 共25页
2022年京改版八年级数学上册第十二章三角形同步测试练习题(含答案解析).docx_第13页
第13页 / 共25页
2022年京改版八年级数学上册第十二章三角形同步测试练习题(含答案解析).docx_第14页
第14页 / 共25页
2022年京改版八年级数学上册第十二章三角形同步测试练习题(含答案解析).docx_第15页
第15页 / 共25页
2022年京改版八年级数学上册第十二章三角形同步测试练习题(含答案解析).docx_第16页
第16页 / 共25页
2022年京改版八年级数学上册第十二章三角形同步测试练习题(含答案解析).docx_第17页
第17页 / 共25页
2022年京改版八年级数学上册第十二章三角形同步测试练习题(含答案解析).docx_第18页
第18页 / 共25页
2022年京改版八年级数学上册第十二章三角形同步测试练习题(含答案解析).docx_第19页
第19页 / 共25页
2022年京改版八年级数学上册第十二章三角形同步测试练习题(含答案解析).docx_第20页
第20页 / 共25页
2022年京改版八年级数学上册第十二章三角形同步测试练习题(含答案解析).docx_第21页
第21页 / 共25页
2022年京改版八年级数学上册第十二章三角形同步测试练习题(含答案解析).docx_第22页
第22页 / 共25页
2022年京改版八年级数学上册第十二章三角形同步测试练习题(含答案解析).docx_第23页
第23页 / 共25页
2022年京改版八年级数学上册第十二章三角形同步测试练习题(含答案解析).docx_第24页
第24页 / 共25页
2022年京改版八年级数学上册第十二章三角形同步测试练习题(含答案解析).docx_第25页
第25页 / 共25页
亲,该文档总共25页,全部预览完了,如果喜欢就下载吧!
资源描述

1、京改版八年级数学上册第十二章三角形同步测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,已知ABAC,ADAE,AB=AC,AD=AE,则BFD的度数是()A60B90C45D1202、观察下列作

2、图痕迹,所作线段为的角平分线的是()ABCD3、如图,在RtABC中,ABC90,分别以点A和点B为圆心,大于AB的长为半径作弧相交于点D和点E,直线DE交AC于点F,交AB于点G,连接BF,若BF3,AG2,则BC()A5B4C2D24、如图,在中,则()ABCD5、下列说法:若,则为的中点若,则是的平分线,则若,则,其中正确的有()A1个B2个C3个D4个6、以下四个标志,每个标志都有图案和文字说明,其中的图案是轴对称图形是()ABCD7、若三角形的三边为a,b,c、满足a2+b2+c2+506a+8b+10c,此三角形的形状是()A锐角三角形B直角三角形C钝角三角形D不确定8、如图,在A

3、BC中,DE是AC的垂直平分线,且分别交BC,AC于点D和E,B60,C25,则BAD为()A50B70C75D809、如图,按以下步骤进行尺规作图:(1)以点为圆心,任意长为半径作弧,交的两边,分别于,两点;(2)分别以点,为圆心,大于的长为半径作弧,两弧在内交于点;(3)作射线,连接,下列结论错误的是()A垂直平分BCD10、如图,ABC的三边AB,BC,CA长分别是20,30,40,其三条角平分线将ABC分为三个三角形,则SABO:SBCO:SCAO等于()A1:1:1B1:2:3C2:3:4D3:4:5第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在继承和发扬

4、红色学校光荣传统,与时俱进,把育英学校建成一所文明的、受社会尊敬的学校升旗仪式上,如图所示,一根旗杆的升旗的绳垂直落地后还剩余1米,若将绳子拉直,则绳端离旗杆底端的距离有5米则旗杆的高度_2、如图,等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点分别过点E,F沿着平行于BA,CA方向各剪一刀,则剪下的DEF的周长是_ 3、如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作等边ABC和等边CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ则下列结论:ADBE;PQAE;APBQ;DEDP其中正确的有_(填序号)4、如图,在中,点,都在边上,若,则

5、的长为_.5、如图,在等腰直角三角形ABC中,BAC90,在BC上截取BDBA,作ABC的平分线与AD相交于点P,连接PC,若ABC的面积为2cm2,则BPC的面积为 _cm2三、解答题(5小题,每小题10分,共计50分)1、如图,在中,点,分别是、边上的点,与相交于点,求证:是等腰三角形2、如图,在中,是边上的一点,平分,交边于点,连接(1)求证:;(2)若,求的度数3、如图,在ABC中,CDAB于点D,若AC=,CD=5,BC=13,求ABC的面积4、如图(1),AB4cm,ACAB,BDAB,ACBD3cm点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向

6、点D运动它们运动的时间为t(s)(1)若点Q的运动速度与点P的运动速度相等,当t1时,ACP与BPQ是否全等,并判断此时线段PC和线段PQ的位置关系,请分别说明理由;(2)如图(2),将图(1)中的“ACAB,BDAB”改为“CABDBA60”,其他条件不变设点Q的运动速度为xcm/s,是否存在实数x,使得ACP与BPQ全等?若存在,求出相应的x、t的值;若不存在,请说明理由5、细心观察下图,认真分析各式,然后解答问题,;,;,(1)直接写出:_(2)请用含有(是正整数)的等式表示上述变化规律:_=_,_;(3)求出的值-参考答案-一、单选题1、B【解析】【分析】先证BAECAD,得出B=C,

7、再证CFB=BAC=90即可【详解】解:ABAC,ADAE,BAC=DAE=90,BAE=CAD,在BAE和CAD中,,BAECAD,B=C,BGA=CGF,CFB=BAC=90,BFD=90,故选:B【考点】本题考查了全等三角形的判定与性质,解题关键是确定全等三角形并通过8字型导角求出度数2、C【解析】【分析】根据角平分线画法逐一进行判断即可【详解】:所作线段为AB边上的高,选项错误;B:做图痕迹为AB边上的中垂线,CD为AB边上的中线,选项错误;C:CD为的角平分线,满足题意。D:所作线段为AB边上的高,选项错误故选:.【考点】本题考查点到直线距离的画法,角平分线的画法,中垂线的画法,能够

8、区别彼此之间的不同是解题切入点3、C【解析】【分析】利用线段垂直平分线的性质得到,再证明,利用勾股定理即可解决问题【详解】解:由作图方法得垂直平分,故选:【考点】本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线)方法是解题关键,同时还考查了线段垂直平分线的性质4、D【解析】【分析】先根据等腰三角形的性质得到B的度数,再根据平行线的性质得到BCD.【详解】解:AB=AC,A=40,B=ACB=70,CDAB,BCD=B=70,故选D.【考点】本题考查了等腰三角形的性质和平行线的性质,掌握等边

9、对等角是关键,难度不大.5、A【解析】【分析】根据直线中点、角平分线、有理数大小比较以及绝对值的性质,逐一判定即可.【详解】当三点不在同一直线上的时候,点C不是AB的中点,故错误;当OC位于AOB的内部时候,此结论成立,故错误;当为负数时,故错误;若,则,故正确;故选:A.【考点】此题主要考查直线中点、角平分线、有理数大小比较以及绝对值的性质,熟练掌握,即可解题.6、D【解析】【分析】根据轴对称图形的定义判断即可【详解】A,B,C都不是轴对称图形,都不符合题意;D是轴对称图形,符合题意,故选D.【考点】本题考查了轴对称图形的定义,准确理解轴对称图形的定义是解题的关键7、B【解析】【分析】已知等

10、式变形后,利用完全平方公式化简,利用非负数的性质求出a,b,c的值,即可做出判断【详解】解:根据题意得:a2+b2+c2+50-6a-8b-10c=0,(a3)2(b5)2(c5)20,a30,b50,c50,a3,b4,c5,a2b2=c2,则三角形形状为直角三角形故选:B【考点】此题考查了因式分解的应用,熟练掌握完全平方公式是解本题的关键8、B【解析】【分析】根据线段垂直平分线的性质得到DA=DC,根据等腰三角形的性质得到DAC=C,根据三角形内角和定理求出BAC,计算即可【详解】DE是AC的垂直平分线,DA=DC,DAC=C=25,B=60,C=25,BAC=95,BAD=BAC-DAC

11、=70,故选B【考点】本题考查的是线段垂直平分线的性质、等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键9、D【解析】【分析】利用全等三角形的性质以及线段的垂直平分线的判定解决问题即可【详解】解:由作图可知,在OCD和OCE中,OCDOCE(SSS),DCO=ECO,1=2,OD=OE,CD=CE,OC垂直平分线段DE,故A,B,C正确,没有条件能证明CE=OE,故选:D【考点】本题考查了作图-基本作图,全等三角形的判定和性质,线段的垂直平分线的判定等知识,解题的关键是理解题意,灵活运用所学知识解决问题10、C【解析】【分析】过点作于点,作于点,作于点,先根据

12、角平分线的性质可得,再根据三角形的面积公式即可得【详解】解:如图,过点作于点,作于点,作于点,是的三条角平分线,故选:C【考点】本题考查了角平分线的性质,熟练掌握角平分线的性质是解题关键二、填空题1、12米【解析】【分析】设旗杆的高度是x米,绳子长为(x+1)米,旗杆,拉直的绳子和BC构成直角三角形,根据勾股定理可求出x的值,从而求出旗杆的高度【详解】解:设旗杆的高度为米,根据题意可得:,解得:,答:旗杆的高度为12米故答案为:12米【考点】本题考查勾股定理的应用,关键看到旗杆,拉直的绳子和BC构成直角三角形,根据勾股定理可求解2、6【解析】【分析】先说明DEF是等边三角形,再根据E,F是边B

13、C上的三等分求出BC的长,最后求周长即可.【详解】解:等边三角形纸片ABCB=C=60DEAB,DFACDEF=DFE=60DEF是等边三角形DE=EF=DFE,F是边BC上的三等分点,BC=6EF=2DE=EF=DF=2DEF= DE+EF+DF=6故答案为6【考点】本题考查了等边三角形的判定和性质、三等分点的意义,灵活应用等边三角形的性质是正确解答本题的关键3、【解析】【分析】根据等边三角形的三边都相等,三个角都是60,可以证明ACD与BCE全等,根据全等三角形对应边相等可得ADBE,所以正确,对应角相等可得CADCBE,然后证明ACP与BCQ全等,根据全等三角形对应边相等可得PCPQ,从

14、而得到CPQ是等边三角形,再根据等腰三角形的性质可以找出相等的角,从而证明PQAE,所以正确;根据全等三角形对应边相等可以推出APBQ,所以正确,根据可推出DPEQ,再根据DEQ的角度关系DEDP【详解】解:等边ABC和等边CDE,ACBC,CDCE,ACBECD60,180ECD180ACB,即ACDBCE,在ACD与BCE中, ,ACDBCE(SAS),ADBE,故小题正确;ACDBCE(已证),CADCBE,ACBECD60(已证),BCQ18060260,ACBBCQ60,在ACP与BCQ中, ,ACPBCQ(ASA),APBQ,故小题正确;PCQC,PCQ是等边三角形,CPQ60,A

15、CBCPQ,PQAE,故小题正确;ADBE,APBQ,ADAPBEBQ,即DPQE,DQEECQ+CEQ60+CEQ,CDE60,DQECDE,故小题错误综上所述,正确的是故答案为:【考点】本题考查了等边三角形的性质,全等三角形的判定与性质,以及平行线的判定,需要多次证明三角形全等,综合性较强,但难度不是很大,是热点题目,仔细分析图形是解题的关键4、9.【解析】【分析】根据等腰三角形的性质及全等三角形的判定与性质即可求解.【详解】因为ABC是等腰三角形,所以有AB=AC,BAD=CAE,ABD=ACE,所以ABDACE(ASA),所以BD=EC,EC=9.【考点】此题主要考查等腰三角形的性质,

16、解题的关键是熟知全等三角形的判定与性质.5、1【解析】【分析】根据等腰三角形三线合一的性质即可得出,即得出和是等底同高的三角形,和是等底同高的三角形,即可推出,即可求出答案【详解】BDBA,BP是ABC的角平分线,和是等底同高的三角形,和是等底同高的三角形,故答案为:1【考点】本题考查等腰三角形的性质掌握等腰三角形“三线合一”是解答本题的关键三、解答题1、见解析【解析】【分析】先证明,得到,进而得到,故可求解【详解】证明:在和中又即是等腰三角形【考点】此题主要考查等腰三角形的判定,解题的关键是熟知全等三角形的判定与性质2、 (1)见解析;(2)【解析】【分析】(1)由角平分线定义得出,由证明即

17、可;(2)由三角形内角和定理得出,由角平分线定义得出,在中,由三角形内角和定理即可得出答案【详解】(1)证明:平分,在和中,;(2),平分,在中,【考点】本题考查了全等三角形的判定与性质、角平分线的定义、三角形内角和定理;熟练掌握三角形内角和定理和角平分线定义,证明三角形全等是解题的关键3、【解析】【分析】由于CDAB,CD为RtADC和RtBCD的公共边,在这两个三角形中利用勾股定理可求出AD和BD的长,然后根据三角形面积公式求得即可【详解】解:CDAB,CDA=BDC=90在RtADC中,AD2=AC2CD2,在RtBCD中,BD2=BC2CD2,AC= ,CD=5,BC=13,AD=3,

18、BD=12,AB=15,SABC=ABCD=.【考点】本题考查了勾股定理的运用,根据勾股定理求得AB的长是解题的关键4、(1)全等,理由见详解;PCPQ,理由见解析;(2)存在,或【解析】【分析】(1)利用SAS证得ACPBPQ,得出ACP=BPQ,进一步得出APC+BPQ=APC+ACP=90得出结论即可;(2)由ACPBPQ,分两种情况:AC=BP,AP=BQ,AC=BQ,AP=BP,建立方程组求得答案即可【详解】解:(1)当时,又,在和中,即线段与线段垂直(2)若,则,则,解得:;若,则,则,解得:;综上所述,存在或使得与全等【考点】本题主要考查了全等三角形的判定与性质,两边及其夹角分别对应相等的两个三角形全等在解题时注意分类讨论思想的运用5、 (1)(2)(3)【解析】【分析】(1)由给出的数据写出的长即可; (2)由(1)和S1、S2、S3Sn,找出规律即可得出结果; (3)首先求出再求和即可(1)解:; 故答案为:;(2) ,;,;,归纳总结可得: 故答案为:(3), 【考点】本题主要考查勾股定理的理解,实数的运算规律探究,掌握“从具体到一般的探究方法”是解本题的关键

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 语文

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1