ImageVerifierCode 换一换
格式:DOCX , 页数:10 ,大小:652.58KB ,
资源ID:692281      下载积分:2 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-692281-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2022年二模新定义(学生版).docx)为本站会员(a****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至kefu@ketangku.com或直接QQ联系客服),我们立即给予删除!

2022年二模新定义(学生版).docx

1、2022年二模新定义1对于平面直角坐标系中的图形G和点Q,给出如下定义:将图形G绕点Q顺时针旋转得到图形N,图形N称为图形G关于点Q的“垂直图形”,例如,图1中线段为线段关于点O的“垂直图形”(1)线段关于点的“垂直图形”为线段若点N的坐标为,则点P的坐标为_;若点P的坐标为,则点N的坐标为_;(2)线段关于点H的“垂直图形”记为,点E的对应点为,点的对应点为求点的坐标(用含a的式子表示);若的半径为2,上任意一点都在内部或圆上,直接写出满足条件的的长度的最大值2在平面直角坐标系xOy中,O的半径为1,且A,B两点中至少有一点在O外给出如下定义:平移线段AB,得到线段(,分别为点A,B的对应点

2、),若线段上所有的点都在O的内部或O上,则线段长度的最小值称为线段AB到O的“平移距离”(1)如图1,点,的坐标分别为(3,0),(2,0),线段到O的“平移距离”为_,点,的坐标分别为(,),(,),线段到O的“平移距离”为_;(2)若点A,B都在直线上,记线段AB到O的“平移距离”为d,求d的最小值;(3)如图2,若点A坐标为(1,),线段AB到O的“平移距离”为1,画图并说明所有满足条件的点B形成的图形(不需证明)3在平面直角坐标系中,对于图形及过定点的直线,有如下定义:过图形上任意一点作于点,若有最大值,那么称这个最大值为图形关于直线的最佳射影距离,记作,此时点称为图形关于直线的最佳射

3、影点(1)如图1,已知,写出线段关于轴的最佳射影距离_;(2)已知点,C的半径为,求C关于轴的最佳射影距离d(C,x轴),并写出此时C 关于轴的最佳射影点的坐标;(3)直接写出点关于直线的最佳射影距离的最大值4对于平面直角坐标系xOy中的图形P,Q,给出如下定义:M为图形P上任意一点,N为图形Q上任意一点,如果M,N两点间的距离有最小值,那么称这个最小值为图形P,Q间的“非常距离”,记作已知点,连接AB(1)d(点O,AB) ;(2)O半径为r,若,直接写出r的取值范围;(3)O半径为r,若将点A绕点B逆时针旋转,得到点当时,求出此时r的值;对于取定的r值,若存在两个使,直接写出r的范围5在平

4、面直角坐标系中,的半径为1对于线段给出如下定义:若线段与有两个交点M,N,且,则称线段是的“倍弦线”(1)如图,点A,B,C,D的横、纵坐标都是整数在线段,中,的“倍弦线”是_;(2)的“倍弦线”与直线交于点E,求点E纵坐标的取值范围;(3)若的“倍弦线”过点,直线与线段有公共点,直接写出b的取值范围6在平面直角坐标系中,给出如下定义:若点在图形上,点在图形上,如果两点间的距离有最小值,那么称这个最小值为图形的“近距离”,记为特别地,当图形与图形有公共点时,已知A(4,0),B(0,4),C(4,0),D(0,4),(1)d(点A,点C)_,d(点A,线段BD)_;(2)O半径为r, 当r 1

5、时,求 O与正方形ABCD的“近距离”d(O,正方形ABCD); 若d(O,正方形ABCD)1,则r _(3)M 为x轴上一点,M的半径为1,M与正方形ABCD的“近距离”d(M,正方形ABCD)1,请直接写出圆心M的横坐标 m的取值范围7在平面直角坐标系xOy中,O的半径为1,A为任意一点,B为O上任意一点,给出如下定义:记A,B两点间的距离的最小值为p(规定:点A在O上时,),最大值为q,那么把的值称为点A与O的“关联距离”,记作d(A,O)(1)如图,点D,E,F的横、纵坐标都是整数d(D,O)_;若点M在线段EF上,求d(M,O)的取值范围;(2)若点N在直线上,直接写出d(N,O)的

6、取值范围;(3)正方形的边长为m,若点P在该正方形的边上运动时,满足d(P,O)的最小值为1,最大值为,直接写出m的最小值和最大值8对于平面直角坐标系xOy中的点与图形T,给出如下定义:在点P与图形T上各点连接的所有线段中,线段长度的最大值与最小值的差,称为图形T关于点P的“宽距”(1)如图,O的半径为2,且与x轴分别交于A,B两点线段AB关于点P的“宽距”为_;O关于点P的“宽距”为_点为x轴正半轴上的一点,当线段AM关于点P的“宽距”为2时,求m的取值范围(2)已知一次函数的图象分别与x轴、y轴交于D、E两点,C的圆心在x轴上,且C的半径为1若线段DE上的任意一点K都能使得C关于点K的“宽

7、距”为2,直接写出圆心C的横坐标的取值范围9在平面直角坐标系xOy中,对于点P和直线,给出如下定义:若点P在直线上,且以点P为顶点的角是45,则称点P为直线的“关联点”(1)若在直线上存在直线的“关联点”P则点P的坐标为_;(2)过点作两条射线,一条射线垂直于x轴,垂足为A;另一条射线、交x轴于点B,若点P为直线的“关联点”求点B的坐标;(3)以点O为圆心,1为半径作圆,若在上存在点N,使得的顶点P为直线的“关联点”则点P的横坐标a的取值范围是_10在平面直角坐标系中,对于线段AB与直线,给出如下定义:若线段AB关于直线l的对称线段为(,分别为点A,B的对应点),则称线段为线段AB的“关联线段

8、”已知点,(1)线段为线段AB的“关联线段”,点的坐标为,则的长为_,b的值为_;(2)线段为线段AB的“关联线段”,直线经过点,若点,都在直线上,连接,求的度数;(3)点,线段为线段AB的“关联线段”,且当b取某个值时,一定存在k使得线段与线段PQ有公共点,直接写出b的取值范围11我们规定:如图,点在直线上,点和点均在直线的上方,如果,点就是点关于直线的“反射点”,其中点为“点”,射线与射线组成的图形为“形”在平面直角坐标系中,(1)如果点,那么点关于轴的反射点的坐标为 ;(2)已知点,过点作平行于轴的直线如果点关于直线的反射点和“点”都在直线上,求点的坐标和的值;是以为圆心,为半径的圆,如

9、果某点关于直线的反射点和“点”都在直线上,且形成的“形”恰好与有且只有两个交点,求的取值范围12在平面直角坐标系xOy中,对于点R和线段PQ,给出如下定义:M为线段PQ上任意一点,如果R,M两点间的距离的最小值恰好等于线段PQ的长,则称点R为线段PQ的“等距点”(1)已知点在点,中,线段OA的“等距点”是_;若点C在直线上,并且点C是线段OA的“等距点”,求点C的坐标;(2)已知点,点,图形W是以点为圆心,1为半径的位于x轴及x轴上方的部分若图形W上存在线段DE的“等距点”,直接写出t的取值范围13在平面直角坐标系xOy中,对于线段MN,直线l和图形W给出如下定义:线段MN关于直线l的对称线段

10、为MN(M,N分别是M,N的对应点)若MN与MN均在图形W内部(包括边界),则称图形W为线段MN关于直线l的“对称封闭图形”(1)如图,点P(-1,0) 已知图形W1:半径为1的O,W2:以线段PO为边的等边三角形,W3:以O为中心且边长为2的正方形,在W1,W2,W3中,线段PO关于y轴的“对称封闭图形”是; 以O为中心的正方形ABCD的边长为4,各边与坐标轴平行若正方形ABCD是线段PO关于直线 y = x + b的“对称封闭图形”,求b的取值范围;(2)线段MN在由第四象限、原点、x轴正半轴以及y轴负半轴组成的区域内,且MN的长度为2若存在点Q(),使得对于任意过点Q的直线l,有线段MN,满足半径为r的O是该线段关于l的“对称封闭图形”,直接写出r的取值范围14在平面直角坐标系中,的半径为1,对于和直线给出如下定义:若的一条边关于直线的对称线段是的弦,则称是的关于直线的“关联三角形”,直线是“关联轴”(1)如图1,若是的关于直线的“关联三角形”,请画出与的“关联轴”(至少画两条);(2)若中,点坐标为,点坐标为,点在直线的图像上,存在“关联轴”使是的关联三角形,求点横坐标的取值范围;(3)已知,将点向上平移2个单位得到点,以为圆心为半径画圆,为上的两点,且(点在点右侧),若与的关联轴至少有两条,直接写出的最小值和最大值,以及最大时的长

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1