1、35.1 探索与表达规律【教学目标】知识与技能1.会用代数式表示简单问题中的数量关系,能用合并同类项、去括号等法则验证所探索的规律.2.培养学生的观察能力、动手能力、创新能力以及交流协作能力,提高其分析问题和解决问题的能力.过程与方法1.经历探索数量关系的过程,运用符号表示规律,通过验算验证规律的过程.2.在解决问题的过程中体验类比、转化等思维方法,培养学生良好的思维品质.情感、态度与价值观1.学会辩证唯物主义思想中的从特殊到一般、从具体到抽象的认知观点,并通过小组讨论、合作交流等方式,体验在解决问题的过程中与他人合作的意义.2.让学生体会到数学就在身边,激发学生的探究热情,体验数学活动的探索
2、性以及创造性,培养学生实事求是的科学态度.【教学重难点】重点探索实际问题中蕴含的关系和规律.难点用字母、运算符号表示一般规律.【教学过程】一、创设情境教师课件出示杨辉三角如下:(第一、二排直接出现,第三、四、五排边展现边提问:你能猜想中间的数字是几吗?两边的呢?最后引导学生观察数列并提问:你能尝试写出下一层的数字吗?并说说你是怎么得到的?)111121133114641151010511615201561172135352171 师:这个有规律的数列是我国宋朝的数学家杨辉在其著作中提到的杨辉三角,这节课我们就一起来探究数学中的规律.二、讲授新课师:请同学们认真观察教材第98页中的日历图片,然后
3、快速记住日历中的数字,并准确地说出它们的位置.教师引导学生观察教材第98页中的日历图片,通过观察找到日历中每一行、每一列、每一条对角线上相邻两数之间的关系,并提问:1.请思考方框中的九个数的和与中间的数有什么关系?2.请同学们拿出日历,用方框任意框住这份日历中其他的九个数,这个关系是否还成立?3.这个关系对任意一个月份的日历都成立吗?为什么?通过探索能够得到:方框中的九个数之和等于9乘以正中间的数.三、数学游戏师:请同学们任想一个数,将一个数减去1后乘以2,再减去3,然后加上5,将最后的结果告诉老师,让老师猜猜你们心中想的数字是几?学生讨论交流,从而激发起学生的学习兴趣.生1:你在心里想好一个两位数,将十位数字乘以2,然后加上3,再把所得的新数乘以5,最后把得到的新数加上个位数字.把你的结果告诉我,我就知道你心里想的两位数是什么数.生2:你是怎么知道的?学生共同探究其中的规律.学生以小组为单位,设计类似的数字游戏,并解释其中的道理.四、课堂小结师:请同学们谈谈本节课的收获和体会,包括基本知识和基本方法.学生发言,教师予以点评.