收藏 分享(赏)

《高考导航》2016届新课标数学(理)一轮复习讲义 第八章 第6讲 双曲线.doc

上传人:高**** 文档编号:683887 上传时间:2024-05-30 格式:DOC 页数:14 大小:363KB
下载 相关 举报
《高考导航》2016届新课标数学(理)一轮复习讲义 第八章 第6讲 双曲线.doc_第1页
第1页 / 共14页
《高考导航》2016届新课标数学(理)一轮复习讲义 第八章 第6讲 双曲线.doc_第2页
第2页 / 共14页
《高考导航》2016届新课标数学(理)一轮复习讲义 第八章 第6讲 双曲线.doc_第3页
第3页 / 共14页
《高考导航》2016届新课标数学(理)一轮复习讲义 第八章 第6讲 双曲线.doc_第4页
第4页 / 共14页
《高考导航》2016届新课标数学(理)一轮复习讲义 第八章 第6讲 双曲线.doc_第5页
第5页 / 共14页
《高考导航》2016届新课标数学(理)一轮复习讲义 第八章 第6讲 双曲线.doc_第6页
第6页 / 共14页
《高考导航》2016届新课标数学(理)一轮复习讲义 第八章 第6讲 双曲线.doc_第7页
第7页 / 共14页
《高考导航》2016届新课标数学(理)一轮复习讲义 第八章 第6讲 双曲线.doc_第8页
第8页 / 共14页
《高考导航》2016届新课标数学(理)一轮复习讲义 第八章 第6讲 双曲线.doc_第9页
第9页 / 共14页
《高考导航》2016届新课标数学(理)一轮复习讲义 第八章 第6讲 双曲线.doc_第10页
第10页 / 共14页
《高考导航》2016届新课标数学(理)一轮复习讲义 第八章 第6讲 双曲线.doc_第11页
第11页 / 共14页
《高考导航》2016届新课标数学(理)一轮复习讲义 第八章 第6讲 双曲线.doc_第12页
第12页 / 共14页
《高考导航》2016届新课标数学(理)一轮复习讲义 第八章 第6讲 双曲线.doc_第13页
第13页 / 共14页
《高考导航》2016届新课标数学(理)一轮复习讲义 第八章 第6讲 双曲线.doc_第14页
第14页 / 共14页
亲,该文档总共14页,全部预览完了,如果喜欢就下载吧!
资源描述

1、第6讲双曲线1双曲线的概念平面内动点P与两个定点F1、F2(|F1F2|2c0)的距离之差的绝对值为常数2a(02a2c),则点P的轨迹叫双曲线这两个定点叫双曲线的焦点,两焦点间的距离叫焦距集合PM|MF1|MF2|2a,|F1F2|2c,其中a、c为常数且a0,c0:(1)当ac时,P点的轨迹是双曲线;(2)当ac时,P点的轨迹是两条射线;(3)当ac时,P点不存在2双曲线的标准方程和几何性质标准方程1(a0,b0)1(a0,b0)图形性质范围xa或xa,yRxR,ya或ya对称性对称轴:坐标轴,对称中心:原点顶点A1(a,0),A2(a,0)A1(0,a),A2(0,a)渐近线yxyx离心

2、率e,e(1,)实虚轴线段A1A2叫做双曲线的实轴,它的长|A1A2|2a;线段B1B2叫做双曲线的虚轴,它的长|B1B2|2b;a叫做双曲线的半实轴长,b叫做双曲线的半虚轴长a、b、c的关系c2a2b2(ca0,cb0)做一做1(2014高考课标全国卷)已知双曲线1(a0)的离心率为2,则a()A2B.C. D1答案:D2已知中心在原点的双曲线C的右焦点为F(3,0),离心率等于,则C的方程是()A.1 B.1C.1 D.1答案:B1辨明三个易误点(1)双曲线的定义中易忽视2a|F1F2|这一条件若2a|F1F2|,则轨迹是以F1,F2为端点的两条射线,若2a|F1F2|,则轨迹不存在(2)

3、区分双曲线中a,b,c的关系与椭圆中a,b,c的关系,在椭圆中a2b2c2,而在双曲线中c2a2b2.(3)双曲线的离心率e(1,),而椭圆的离心率e(0,1)2求双曲线标准方程的两种方法(1)定义法根据题目的条件,判断是否满足双曲线的定义,若满足,求出相应的a,b,c,即可求得方程(2)待定系数法与双曲线1共渐近线的可设为(0);若渐近线方程为yx,则可设为(0);若过两个已知点,则可设为1(mn0)3双曲线几何性质的关注点双曲线的几何性质可从以下三点关注:(1)“六点”:两焦点、两顶点、两虚轴端点;(2)“四线”:两对称轴(实、虚轴)、两渐近线;(3)“两形”:中心、顶点、虚轴端点构成的三

4、角形;双曲线上的一点(不包括顶点)与两焦点构成的三角形做一做3“k9”是“方程1表示双曲线”的()A充要条件B充分不必要条件C必要不充分条件D既不充分也不必要条件解析:选B.当k9时,9k0,k40,方程表示双曲线当k4时,9k0,k40,方程也表示双曲线“k9”是“方程1表示双曲线”的充分不必要条件4(2014高考北京卷)设双曲线C经过点(2,2),且与x21具有相同渐近线,则C的方程为_;渐近线方程为_解析:设双曲线C的方程为x2,将点(2,2)代入上式,得3,C的方程为1,其渐近线方程为y2x.答案:1y2x_双曲线的定义_(1)(2014高考大纲全国卷)已知双曲线C的离心率为2,焦点为

5、F1、F2 ,点A在C上若|F1A|2|F2A|,则cosAF2F1()A.B.C. D.(2)P是双曲线1(a0,b0)右支上一点,F1,F2分别为左、右焦点,且焦距为2c,则PF1F2的内切圆圆心M的横坐标是()Aa BbCc Dabc解析(1) 由e2,得c2a,如图,由双曲线的定义得|F1A|F2A|2a,又|F1A|2|F2A|,故|F1A|4a,|F2A|2a,cosAF2F1. (2)如图,内切圆圆心M到各边的距离分别为MA,MB,MC,切点分别为A,B,C,由三角形的内切圆的性质则有:|CF1|AF1|,|AF2|BF2|,|PC|PB|,|PF1|PF2|CF1|BF2|AF

6、1|AF2|2a,又|AF1|AF2|2c,|AF1|ac,则|OA|AF1|OF1|a.M的横坐标和A的横坐标相同 答案(1)A(2)A本例(1)中双曲线方程变为x21,若点A在C上,|F1A|2|F2A|不变,求cosAF2F1的值解:如图,由双曲线的定义得|F1A|F2A|2,又|F1A|2|F2A|,故|F1A|4,|F2A|2,cosAF2F1.规律方法(1)在应用双曲线定义时,要注意定义中的条件,搞清所求轨迹是双曲线,还是双曲线的一支若是双曲线的一支,则需确定是哪一支(2)在“焦点三角形”中,正弦定理、余弦定理、双曲线的定义是经常使用的知识点另外,还经常结合|PF1|PF2|2a,

7、运用平方的方法,建立它与|PF1|PF2|的联系1.(1)已知ABP的顶点A,B分别为双曲线1的左,右焦点,顶点P在双曲线上,则的值等于()A.B.C. D.(2)已知双曲线x2y21,点F1,F2为其两个焦点,点P为双曲线上一点,若PF1PF2,则|PF1|PF2|的值为_解析:(1)在ABP中,由正弦定理知.(2)设P在双曲线的右支上,|PF1|2x,|PF2|x(x0),因为PF1PF2,所以(x2)2x2(2c)28,所以x1,x21,所以|PF2|PF1|2.答案:(1)A(2)2_求双曲线的标准方程_(1)(2015东北三校联合模拟)与椭圆C:1共焦点且过点(1,)的双曲线的标准方

8、程为()Ax21 By21C.1 D.x21(2)(2014高考江西卷)过双曲线C:1的右顶点作x轴的垂线,与C的一条渐近线相交于点A.若以C的右焦点为圆心、半径为4的圆经过A,O两点(O为坐标原点),则双曲线C的方程为()A.1 B.1C.1 D.1解析(1)椭圆1的焦点坐标为(0,2),(0,2),设双曲线的标准方程为1(m0,n0),则,解得mn2.双曲线的标准方程为1.(2)由得A(a,b)由题意知右焦点到原点的距离为c4,4,即(a4)2b216.而a2b216,a2,b2.双曲线C的方程为1.答案(1)C(2)A规律方法求双曲线的标准方程的基本方法是定义法和待定系数法待定系数法具体

9、过程是先定形,再定量,即先确定双曲线标准方程的形式,然后再根据a,b,c,e及渐近线之间的关系,求出a,b的值2.求适合下列条件的双曲线的标准方程:(1)虚轴长为12,离心率为;(2)焦距为26,且经过点M(0,12)解:(1)设双曲线的标准方程为1或1(a0,b0)由题意知,2b12,e,b6,c10,a8.双曲线的标准方程为1或1.(2)双曲线经过点M(0,12),M(0,12)为双曲线的一个顶点,故焦点在y轴上,且a12.又2c26,c13.b2c2a225.双曲线的标准方程为1._双曲线的几何性质(高频考点)_双曲线的几何性质及应用,是高考命题的热点,多以选择题或填空题的形式呈现,试题

10、难度不大,多为容易题或中档题高考对双曲线的几何性质的考查主要有以下四个命题角度:(1)求双曲线的离心率(或范围);(2)求双曲线的渐近线方程;(3)求双曲线方程;(4)求双曲线的焦点(距)、实、虚轴长(1)(2014高考广东卷)若实数k满足0k0,b0)的左、右焦点,双曲线上存在一点P使得(|PF1|PF2|)2b23ab,则该双曲线的离心率为()A. B.C4 D.(3)(2014高考山东卷)已知ab0,椭圆C1的方程为1,双曲线C2的方程为1,C1与C2的离心率之积为,则C2的渐近线方程为()Axy0 B.xy0Cx2y0 D2xy0扫一扫进入91导学网()双曲线及其几何性质解析(1)因为

11、0k0,b0)的离心率为2,焦点到渐近线的距离等于,过右焦点F2的直线l交双曲线于A、B两点,F1为左焦点(1)求双曲线的方程;(2)若F1AB的面积等于6,求直线l的方程解(1)依题意知,b,2a1,c2,双曲线的方程为x21.(2)设A(x1,y1),B(x2,y2),由(1)知F2(2,0)易验证当直线l斜率不存在时不满足题意,故可设直线l:yk(x2),由消元得(k23)x24k2x4k230,直线l与双曲线有两个交点,k,x1x2,x1x2,y1y2k(x1x2),F1AB的面积Sc|y1y2|2|k|x1x2|2|k|12|k|6.得k48k290,则k1.所以直线l的方程为yx2

12、或yx2.规律方法双曲线的综合问题主要为直线与双曲线的位置关系解决这类问题的常用方法是设出直线方程或双曲线方程,然后把直线方程和双曲线方程组成方程组,消元后转化成关于x(或y)的一元二次方程,利用根与系数的关系及整体代入的思想解题. 4.(2015铜陵模拟)若双曲线E:y21(a0)的离心率等于,直线ykx1与双曲线E的右支交于A,B两点(1)求k的取值范围;(2)若|AB|6,求k的值解:(1)由,得故双曲线E的方程为x2y21.设A(x1,y1),B(x2,y2),由得(1k2)x22kx20.直线与双曲线右支交于A,B两点,故即所以1k.(2)由得x1x2,x1x2,|AB|26,整理得

13、28k455k2250,k2或k2.又1k,k.方法思想方程思想在求离心率中的应用设双曲线的一个焦点为F,虚轴的一个端点为B,如果直线FB与该双曲线的一条渐近线垂直,那么此双曲线的离心率为()A.B.C. D.解析设双曲线方程为1(a0,b0),不妨设一个焦点为F(c,0),虚轴端点为B(0,b),则kFB.又渐近线的斜率为,所以由直线垂直关系得()1(显然不符合),即b2ac,又c2a2b2,所以c2a2ac,两边同除以a2,整理得e2e10,解得e或e(舍去)答案D名师点评(1)本题利用方程思想,将已知条件转化为关于a,c的方程,然后求出离心率e.(2)求解椭圆、双曲线的离心率或离心率的取

14、值范围的方法通常是根据条件列出关于a,c的齐次方程或不等式,然后再转化成关于e的方程或不等式求解已知点F是双曲线1(a0,b0)的左焦点,点E是该双曲线的右顶点,过F且垂直于x轴的直线与双曲线交于A,B两点,若ABE是锐角三角形,则该双曲线的离心率e的取值范围是_解析:根据对称性,只要AEF即可由题意,知F(c,0),直线AB的方程为xc,将xc代入双曲线方程,得y2,取点A(c,),则|AF|,|EF|ac,只要|AF|EF|就能使AEF,即acb2a2acc2ac2a20e2e20,解得1e1,故1e0)与双曲线1有相同的焦点,则a的值为()A. B.C4 D.解析:选C.因为椭圆1(a0

15、)与双曲线1有相同的焦点(,0),则有a297,a4.3(2014高考课标全国卷)已知F为双曲线C:x2my23m(m0)的一个焦点,则点F到C的一条渐近线的距离为()A. B3C.m D3m解析:选A.双曲线C的标准方程为1(m0),其渐近线方程为y xx,即yx,不妨选取右焦点F(,0)到其中一条渐近线xy0的距离求解,得d.4(2015河南开封模拟)设F1,F2分别为双曲线1(a0,b0)的左,右焦点若在双曲线右支上存在点P,满足|PF2|F1F2|,且F2到直线PF1的距离等于双曲线的实轴长,则该双曲线的离心率为()A. B.C. D.解析:选B.易知|PF2|F1F2|2c,所以由双

16、曲线的定义知|PF1|2a2c,因为F2到直线PF1的距离等于双曲线的实轴长,所以(ac)2(2a)2(2c)2,即3c22ac5a20,两边同除以a2,得3e22e50,解得e或e1(舍去)5(2015兰州市、张掖市高三联考)已知双曲线1(a0,b0)的左、右焦点分别为F1、F2,以|F1F2|为直径的圆与双曲线渐近线的一个交点为(3,4),则此双曲线的方程为()A.1 B.1C.1 D.1解析:选C.由题意知,圆的半径为5,又点(3,4)在经过第一、三象限的渐近线yx上,因此有,解得,所以此双曲线的方程为1.6已知双曲线1的右焦点的坐标为(,0),则该双曲线的渐近线方程为_解析:依题意知(

17、)29a,所以a4,故双曲线方程为1,则渐近线方程为0.即2x3y0.答案:2x3y0或2x3y07(2015浙江六市六校联盟模拟)如图所示,已知双曲线以长方形ABCD的顶点A,B为左、右焦点,且双曲线过C,D两顶点若AB4,BC3,则此双曲线的标准方程为_解析:设双曲线的标准方程为1(a0,b0)由题意得B(2,0),C(2,3),解得双曲线的标准方程为x21.答案:x218(2015武汉模拟)已知F1,F2分别是双曲线1(a0,b0)的左、右焦点,P为双曲线右支上的任意一点若8a,则双曲线的离心率e的取值范围是_解析:设|PF2|y,则(y2a)28ay(y2a)20y2acae3.答案:

18、(1,39已知双曲线关于两坐标轴对称,且与圆x2y210相交于点P(3,1),若此圆过点P的切线与双曲线的一条渐近线平行,求此双曲线的方程解:切点为P(3,1)的圆x2y210的切线方程是3xy10.双曲线的一条渐近线与此切线平行,且双曲线关于两坐标轴对称,两渐近线方程为3xy0.设所求双曲线方程为9x2y2(0)点P(3,1)在双曲线上,代入上式可得80,所求的双曲线方程为1.10已知离心率为的椭圆的中心在原点,焦点在x轴上,双曲线以椭圆的长轴为实轴,短轴为虚轴,且焦距为2.(1)求椭圆及双曲线的方程;(2)设椭圆的左、右顶点分别为A、B,在第二象限内取双曲线上一点P,连结BP交椭圆于点M,

19、连结PA并延长交椭圆于点N,若,求四边形ANBM的面积解:(1)设椭圆方程为1(ab0),则根据题意知双曲线的方程为1且满足解方程组得椭圆的方程为1,双曲线的方程为1.(2)由(1)得A(5,0),B(5,0),|AB|10,设M(x0,y0),则由,得M为BP的中点,所以P点坐标为(2x05,2y0)将M、P坐标代入椭圆和双曲线方程,得消去y0,得2x5x0250.解得x0或x05(舍去)y0.由此可得M(,),P(10,3)则直线PA的方程是y(x5),代入1,得2x215x250.解得x或x5(舍去),xN,则xNxM,所以MNx轴S四边形ANBM2SAMB21015.1(2015唐山市

20、高三年级统考)已知双曲线C:1(a0,b0)的焦点为F1,F2,且C上点P满足0,|3,|4,则双曲线C的离心率为()A. B.C. D5解析:选D.依题意得,2a|PF2|PF1|1,|F1F2|5,因此该双曲线的离心率e5.2(2015山西阳泉高三第一次诊断)已知F1、F2分别为双曲线C:x2y21的左、右焦点,点P在双曲线C上,且F1PF260,则|PF1|PF2|等于()A2 B4C6 D8解析:选B.由题意知a1,b1,c,|F1F2|2,在PF1F2中,由余弦定理得|PF1|2|PF2|22|PF1|PF2|cos 60|F1F2|28,即|PF1|2|PF2|2|PF1|PF2|

21、8,由双曲线定义得|PF1|PF2|2a2,两边平方得|PF1|2|PF2|22|PF1|PF2|4,得|PF1|PF2|4.3(2015浙江杭州调研)双曲线1(a0,b0)的左、右焦点分别为F1和F2,左、右顶点分别为A1和A2,过焦点F2与x轴垂直的直线和双曲线的一个交点为P,若|是|和|的等比中项,则该双曲线的离心率为_解析:由题意可知|2|,即(ac)22c(ac),化简可得a2b2,则e.答案:4已知c是双曲线1(a0,b0)的半焦距,则的取值范围是_解析:e,由于e1,且函数f(e)在(1,)上是增函数,那么的取值范围是(1,0)答案:(1,0)5(2015湛江模拟)已知双曲线1(

22、a0,b0)的右焦点为F(c,0)(1)若双曲线的一条渐近线方程为yx且c2,求双曲线的方程;(2)以原点O为圆心,c为半径作圆,该圆与双曲线在第一象限的交点为A,过A作圆的切线,斜率为,求双曲线的离心率解:(1)双曲线的渐近线方程为yx,ab,c2a2b22a24,a2b22,双曲线方程为1.(2)设点A的坐标为(x0,y0),直线AO的斜率满足()1,x0y0,依题意,圆的方程为x2y2c2,将代入圆的方程得3yyc2,即y0c,x0c,点A的坐标为(c,c),代入双曲线方程得1,即b2c2a2c2a2b2,又a2b2c2,将b2c2a2代入式,整理得c42a2c2a40,3()48()2

23、40,(3e22)(e22)0,e1,e,双曲线的离心率为.6(选做题)直线l:y(x2)和双曲线C:1(a0,b0)交于A,B两点,且|AB|,又l关于直线l1:yx对称的直线l2与x轴平行(1)求双曲线C的离心率e;(2)求双曲线C的方程解:(1)设双曲线C:1过一、三象限的渐近线l1:0的倾斜角为.因为l和l2关于l1对称,记它们的交点为P,l与x轴的交点为M.而l2与x轴平行,记l2与y轴的交点为Q.依题意有QPOPOMOPM.又l:y(x2)的倾斜角为60,则260,所以tan 30.于是e211,所以e.(2)由于,于是设双曲线方程为1(k0),即x23y23k2.将y(x2)代入x23y23k2中,得x233(x2)23k2.化简得到8x236x363k20.设A(x1,y1),B(x2,y2),则|AB|x1x2|22,解得k21.故所求双曲线C的方程为y21.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3