1、平面解析几何初步一、基础知识(理解去记)1解析几何的研究对象是曲线与方程。解析法的实质是用代数的方法研究几何.首先是通过映射建立曲线与方程的关系,即如果一条曲线上的点构成的集合与一个方程的解集之间存在一一映射,则方程叫做这条曲线的方程,这条曲线叫做方程的曲线。如x2+y2=1是以原点为圆心的单位圆的方程。2求曲线方程的一般步骤:(1)建立适当的直角坐标系;(2)写出满足条件的点的集合;(3)用坐标表示条件,列出方程;(4)化简方程并确定未知数的取值范围;(5)证明适合方程的解的对应点都在曲线上,且曲线上对应点都满足方程(实际应用常省略这一步)。3直线的倾斜角和斜率:直线向上的方向与x轴正方向所
2、成的小于1800的正角,叫做它的倾斜角。规定平行于x轴的直线的倾斜角为00,倾斜角的正切值(如果存在的话)叫做该直线的斜率。根据直线上一点及斜率可求直线方程。4直线方程的几种形式:【必会】【必考】(1)一般式:Ax+By+C=0;(2)点斜式:y-y0=k(x-x0);(3)斜截式:y=kx+b;(4)截距式:;(5)两点式:;(6)法线式方程:xcos+ysin=p(其中为法线倾斜角,|p|为原点到直线的距离);(7)参数式:(其中为该直线倾斜角),t的几何意义是定点P0(x0, y0)到动点P(x, y)的有向线段的数量(线段的长度前添加正负号,若P0P方向向上则取正,否则取负)。5到角与
3、夹角:若直线l1, l2的斜率分别为k1, k2,将l1绕它们的交点逆时针旋转到与l2重合所转过的最小正角叫l1到l2的角;l1与l2所成的角中不超过900的正角叫两者的夹角。若记到角为,夹角为,则tan=,tan=.6平行与垂直:若直线l1与l2的斜率分别为k1, k2。且两者不重合,则l1/l2的充要条件是k1=k2;l1l2的充要条件是k1k2=-1。7两点P1(x1, y1)与P2(x2, y2)间的距离公式:|P1P2|=。8点P(x0, y0)到直线l: Ax+By+C=0的距离公式:。9直线系的方程:若已知两直线的方程是l1:A1x+B1y+C1=0与l2:A2x+B2y+C2=
4、0,则过l1, l2交点的直线方程为A1x+B1y+C1+(A2x+B2y+C2=0;由l1与l2组成的二次曲线方程为(A1x+B1y+C1)(A2x+B2y+C2)=0;与l2平行的直线方程为A1x+B1y+C=0().10二元一次不等式表示的平面区域,若直线l方程为Ax+By+C=0. 若B0,则Ax+By+C0表示的区域为l上方的部分,Ax+By+C0)。其圆心为,半径为。若点P(x0, y0)为圆上一点,则过点P的切线方程为 14根轴:到两圆的切线长相等的点的轨迹为一条直线(或它的一部分),这条直线叫两圆的根轴。给定如下三个不同的圆:x2+y2+Dix+Eiy+Fi=0, i=1, 2
5、, 3. 则它们两两的根轴方程分别为(D1-D2)x+(E1-E2)y+(F1-F2)=0; (D2-D3)x+(E2-E3)y+(F2-F3)=0; (D3-D1)x+(E3-E1)y+(F3-F1)=0。不难证明这三条直线交于一点或者互相平行,这就是著名的蒙日定理。二、基础例题(必会)1坐标系的选取:建立坐标系应讲究简单、对称,以便使方程容易化简。例1 (经典例题) 在ABC中,AB=AC,A=900,过A引中线BD的垂线与BC交于点E,求证:ADB=CDE。证明 见图10-1,以A为原点,AC所在直线为x轴,建立直角坐标系。设点B,C坐标分别为(0,2a),(2a,0),则点D坐标为(a
6、, 0)。直线BD方程为, 直线BC方程为x+y=2a, 设直线BD和AE的斜率分别为k1, k2,则k1=-2。因为BDAE,所以k1k2=-1.所以,所以直线AE方程为,由解得点E坐标为。所以直线DE斜率为因为k1+k3=0.所以BDC+EDC=1800,即BDA=EDC。例2 (经典例题)半径等于某个正三角形高的圆在这个三角形的一条边上滚动。证明:三角形另两条边截圆所得的弧所对的圆心角为600。证明 以A为原点,平行于正三角形ABC的边BC的直线为x轴,建立直角坐标系见图10-2,设D的半径等于BC边上的高,并且在B能上能下滚动到某位置时与AB,AC的交点分别为E,F,设半径为r,则直线
7、AB,AC的方程分别为,.设D的方程为(x-m)2+y2=r2.设点E,F的坐标分别为(x1,y1),(x2,y2),则,分别代入并消去y得所以x1, x2是方程4x2-2mx+m2-r2=0的两根。由韦达定理,所以|EF|2=(x1-x2)2+(y1-y2)2=(x1-x2)2+3(x1-x2)2=4(x1+x2)2-4x1x2=m2-(m2-r2)=r2.所以|EF|=r。所以EDF=600。2到角公式的使用。例3 设双曲线xy=1的两支为C1,C2,正PQR三顶点在此双曲线上,求证:P,Q,R不可能在双曲线的同一支上。证明 假设P,Q,R在同一支上,不妨设在右侧一支C1上,并设P,Q,R
8、三点的坐标分别为且0x1x2-1,在(1)区域里,求函数f(x,y)=y-ax的最大值、最小值。解 (1)由已知得或解得点(x, y)所在的平面区域如图10-4所示,其中各直线方程如图所示。AB:y=2x-5;CD:y=-2x+1;AD:x+y=1;BC:x+y=4.(2) f(x, y)是直线l: y-ax=k在y轴上的截距,直线l与阴影相交,因为a-1,所以它过顶点C时,f(x, y)最大,C点坐标为(-3,7),于是f(x, y)的最大值为3a+7. 如果-12,则l通过B(3,1)时,f(x, y)取最小值为-3a+1.6参数方程的应用。例7 如图10-5所示,过原点引直线交圆x2+(
9、y-1)2=1于Q点,在该直线上取P点,使P到直线y=2的距离等于|PQ|,求P点的轨迹方程。解 设直线OP的参数方程为(t参数)。代入已知圆的方程得t2-t2sin=0.所以t=0或t=2sin。所以|OQ|=2|sin|,而|OP|=t.所以|PQ|=|t-2sin|,而|PM|=|2-tsin|.所以|t-2sin|=|2-tsin|. 化简得t=2或t=-2或sin=-1.当t=2时,轨迹方程为x2+y2=4;当sin=1时,轨迹方程为x=0.7与圆有关的问题。例8 点A,B,C依次在直线l上,且AB=ABC,过C作l的垂线,M是这条垂线上的动点,以A为圆心,AB为半径作圆,MT1与M
10、T2是这个圆的切线,确定AT1T2垂心 的轨迹。解 见图10-6,以A为原点,直线AB为x轴建立坐标系,H为OM与圆的交点,N为T1T2与OM的交点,记BC=1。以A为圆心的圆方程为x2+y2=16,连结OT1,OT2。因为OT2MT2,T1HMT2,所以OT2/HT1,同理OT1/HT2,又OT1=OT2,所以OT1HT2是菱形。所以2ON=OH。又因为OMT1T2,OT1MT1,所以ONOM。设点H坐标为(x,y)。点M坐标为(5, b),则点N坐标为,将坐标代入=ONOM,再由得在AB上取点K,使AK=AB,所求轨迹是以K为圆心,AK为半径的圆。例9 已知圆x2+y2=1和直线y=2x+
11、m相交于A,B,且OA,OB与x轴正方向所成的角是和,见图10-7,求证:sin(+)是定值。证明 过D作ODAB于D。则直线OD的倾斜角为,因为ODAB,所以2,所以。所以例10 已知O是单位圆,正方形ABCD的一边AB是O的弦,试确定|OD|的最大值、最小值。解 以单位圆的圆心为原点,AB的中垂线为x轴建立直角坐标系,设点A,B的坐标分别为A(cos,sin),B(cos,-sin),由题设|AD|=|AB|=2sin,这里不妨设A在x轴上方,则(0,).由对称性可设点D在点A的右侧(否则将整个图形关于y轴作对称即可),从而点D坐标为(cos+2sin,sin),所以|OD|=因为,所以当
12、时,|OD|max=+1;当时,|OD|min=例11 当m变化且m0时,求证:圆(x-2m-1)2+(y-m-1)2=4m2的圆心在一条定直线上,并求这一系列圆的公切线的方程。证明 由消去m得a-2b+1=0.故这些圆的圆心在直线x-2y+1=0上。设公切线方程为y=kx+b,则由相切有2|m|=,对一切m0成立。即(-4k-3)m2+2(2k-1)(k+b-1)m+(k+b-1)2=0对一切m0成立所以即当k不存在时直线为x=1。所以公切线方程y=和x=1.三、趋近高考【必懂】1.(2010江西理)8.直线与圆相交于M,N两点,若,则k的取值范围是A. B. C. D. 【答案】A【解析】
13、考查直线与圆的位置关系、点到直线距离公式,重点考察数形结合的运用.解法1:圆心的坐标为(3.,2),且圆与y轴相切.当,由点到直线距离公式,解得;解法2:数形结合,如图由垂径定理得夹在两直线之间即可, 不取,排除B,考虑区间不对称,排除C,利用斜率估值,选A 2.(2010安徽文)(4)过点(1,0)且与直线x-2y-2=0平行的直线方程是(A)x-2y-1=0 (B)x-2y+1=0 (C)2x+y-2=0 (D)x+2y-1=0【答案】A【解析】设直线方程为,又经过,故,所求方程为.【方法技巧】因为所求直线与与直线x-2y-2=0平行,所以设平行直线系方程为,代入此直线所过的点的坐标,得参
14、数值,进而得直线方程.也可以用验证法,判断四个选项中方程哪一个过点(1,0)且与直线x-2y-2=0平行.3.(2010重庆文)(8)若直线与曲线()有两个不同的公共点,则实数的取值范围为(A) (B)(C) (D)【答案】D解析:化为普通方程,表示圆,因为直线与圆有两个不同的交点,所以解得法2:利用数形结合进行分析得同理分析,可知4.(2010重庆理)(8)直线y=与圆心为D的圆交与A、B两点,则直线AD与BD的倾斜角之和为A. B. C. D. 【答案】C解析:数形结合 由圆的性质可知故5.(2010广东文)6.(2010全国卷1理)(11)已知圆O的半径为1,PA、PB为该圆的两条切线,
15、A、B为两切点,那么的最小值为 (A) (B) (C) (D)7.(2010安徽理)9、动点在圆上绕坐标原点沿逆时针方向匀速旋转,12秒旋转一周。已知时间时,点的坐标是,则当时,动点的纵坐标关于(单位:秒)的函数的单调递增区间是A、B、C、D、和【答案】 D【解析】画出图形,设动点A与轴正方向夹角为,则时,每秒钟旋转,在上,在上,动点的纵坐标关于都是单调递增的。【方法技巧】由动点在圆上绕坐标原点沿逆时针方向匀速旋转,可知与三角函数的定义类似,由12秒旋转一周能求每秒钟所转的弧度,画出单位圆,很容易看出,当t在变化时,点的纵坐标关于(单位:秒)的函数的单调性的变化,从而得单调递增区间.8.(20
16、09江苏卷18)(本小题满分16分) 在平面直角坐标系中,已知圆和圆.(1)若直线过点,且被圆截得的弦长为,求直线的方程;(2)设P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线和,它们分别与圆和圆相交,且直线被圆截得的弦长与直线被圆截得的弦长相等,试求所有满足条件的点P的坐标。【解析】 (1)设直线的方程为:,即由垂径定理,得:圆心到直线的距离,结合点到直线距离公式,得: 化简得:求直线的方程为:或,即或(2) 设点P坐标为,直线、的方程分别为: ,即:因为直线被圆截得的弦长与直线被圆截得的弦长相等,两圆半径相等。由垂径定理,得:圆心到直线与直线的距离相等。 故有:,化简得:关于的方程有无穷多解,有: 解之得:点P坐标为或。