1、“三四五”高效课堂教学设计:(授课日期: 年 月 日 星期 班级 )授课题目2.1.3 分层抽样拟 1 课时第 1课时明确目标(1)正确理解分层抽样的概念;(2)掌握分层抽样的一般步骤;(3)区分简单随机抽样、系统抽样和分层抽样,并选择适当正确的方法进行抽样。重点难点正确理解分层抽样的定义,灵活应用分层抽样抽取样本,并恰当的选择三种抽样方法解决现实生活中的抽样问题。课型讲授 习题 复习 讨论 其它教 学 内 容 与 教 师 活 动 设 计学生活动过程一、先学后讲(一)创设情景,引入新课假设某地区有高中生2400人,初中生10900人,小学生11000人,此地教育部门为了了解本地区中小学的近视情
2、况及其形成原因,要从本地区的小学生中抽取1%的学生进行调查,你认为应当怎样抽取样本?(二)研探新知 1、分层抽样的定义一般地,在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样的方法叫分层抽样。注意:分层抽样又称类型抽样,应用分层抽样应遵循以下要求:(1)分层:将相似的个体归人一类,即为一层,分层要求每层的各个个体互不交叉,即遵循不重复、不遗漏的原则。(2)分层抽样为保证每个个体等可能入样,需遵循在各层中进行简单随机抽样,每层样本数量与每层个体数量的比与这层个体数量与总体容量的比相等。2、分层抽样的步骤:(1)分层:
3、按某种特征将总体分成若干部分。(2)按比例确定每层抽取个体的个数。(3)各层分别按简单随机抽样的方法抽取。(4)综合每层抽样,组成样本。注意:(1)分层需遵循不重复、不遗漏的原则。(2)抽取比例由每层个体占总体的比例确定。(3)各层抽样按简单随机抽样进行。3、 简单随机抽样、系统抽样、分层抽样的比较类 别共同点各自特点联 系适 用范 围简 单随 机抽 样(1)抽样过程中每个个体被抽到的可能性相等(2)每次抽出个体后不再将它放回,即不放回抽样从总体中逐个抽取总体个数较少将总体均分成几部 分,按预先制定的规则在各部分抽取在起始部分样时采用简随机抽样总体个数较多系 统抽 样将总体分成几层,分层进行抽
4、取分层抽样时采用简单随机抽样或系统抽样总体由差异明显的几部分组成分 层抽 样(三)典例精析例1、分层抽样又称类型抽样,即将相似的个体归入一类(层),然后每层抽取若干个体成样本,所以分层抽样为保证每个个体等可能入样,必须进行( ) A、每层等可能抽样B、每层不等可能抽样C、所有层按同一抽样比等可能抽样简析:保证每个个体等可能入样是简单随机抽样、系统抽样、分层抽样共同的特征,为了保证这一点,分层时用同一抽样比是必不可少的,故此选C。例2、如果采用分层抽样,从个体数为N的总体中抽取一个容量为n的样本,那么每个个体被抽到的可能性为 ( )A B. C. D.简析:根据每个个体都等可能入样,所以其可能性
5、本容量与总体容量比,故此题选C。例3、某高中共有900人,其中高一年级300人,高二年级200人,高三年级400人,现采用分层抽样抽取容量为45的样本,那么高一、高二、高三各年级抽取的人数分别为A.15,5,25 B.15,15,15 C.10,5,30 D15,10,20简析:因为300:200:400=3:2:4,于是将45分成3:2:4的三部分。设三部分各抽取的个体数分别为3x,2x,4x,由3x+2x+4x=45,得x=5,故高一、高二、高三各年级抽取的人数分别为15,10,20,故选D。例4、一个地区共有5个乡镇,人口3万人,其中人口比例为3: 2:5:2:3,从3万人中抽取一个30
6、0人的样本,分析某种疾病的发病率,已知这种疾病与不同的地理位置及水土有关,问应采取什么样的方法?并写出具体过程。简析:采用分层抽样的方法。因为疾病与地理位置和水土均有关系,所以不同乡镇的发病情况差异明显,因而采用分层抽样的方法,具体过程如下:(1)将3万人分为5层,其中一个乡镇为一层。(2)按照样本容量的比例随机抽取各乡镇应抽取的样本。3003/15=60(人),3002/15=100(人),3002/15=40(人),3002/15=60(人),因此各乡镇抽取人数分别为60人、40人、100人、40人、60 人。(3)将300人组到一起,即得到一个样本。(四)课堂练习-参看学案二、总结提升1、本节课你主要学习了 四、问题过关参看学案教师分析后,学生独立或合作完成后,教师点评教师分析后,学生独立或合作完成后,教师点评补充内容: 教学后记: