1、天津市部分区20192020学年度第一学期期中练习高二数学第I卷一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设,使不等式成立的x的取值范围为( )A. B. C. D. 【答案】A【解析】【分析】由一元二次不等式的解法可解得x的取值范围为.【详解】由可得:,解得,故选:A【点睛】本题主要考查了一元二次不等式的解法,属于容易题.2.已知椭圆长轴长为4,焦距为2.则( )A. B. C. D. 【答案】B【解析】【分析】根据椭圆的长轴长为可知.【详解】因为椭圆长轴长为4,所以,解得.故选:B【点睛】本题主要考查了椭圆的简单几何性质,属
2、于容易题.3.若,则“且”是“”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分又不必要条件【答案】A【解析】【分析】由且可推出,反之不成立,即可得出结论.【详解】若且,则成立,但,推不出且,所以“且”是“”的充分不必要条件.故选:A【点睛】本题主要考查了充分不必要条件,属于容易题.4.已知数列是等差数列.若,则( )A. 3B. 5C. 7D. 9【答案】C【解析】【分析】根据等差数列的等差中项,即可求解.【详解】因为数列是等差数列,所以,即,解得,故选:C【点睛】本题主要考查了等差数列中等差中项的性质,属于容易题.5.若命题“,”是假命题,则实数m的最小值为(
3、)A. 0B. 1C. 2D. 3【答案】B【解析】【分析】由“,”是假命题可知“”是真命题,利用判别式求解即可.【详解】因为命题“,”是假命题,所以命题“”是真命题,所以,解得,所以实数m的最小值为1.故选:B【点睛】本题主要考查了命题的否定,不等式恒成立,属于中档题.6.已知双曲线的离心率是,则( )A. B. C. D. 【答案】D【解析】【分析】根据双曲线的简单几何性质可知,联立即可求解.【详解】因为双曲线的离心率是,所以,解得,故选:D【点睛】本题主要考查了双曲线的简单几何性质,离心率,属于容易题.7.已知等比数列的首项为1,且,则( )A. 2B. 4C. 8D. 16【答案】A【
4、解析】【分析】根据等比数列的通项公式及可求出公比,再计算即可.【详解】因为等比数列的首项为1,所以由可得:,解得,所以,故选:A【点睛】本题主要考查了等比数列的通项公式,属于中档题.8.已知数列an满足an1ann1(nN*),且a12,则a10( )A. 54B. 55C. 56D. 57【答案】C【解析】【分析】根据数列递推式的特征,利用累加法转化求解即可【详解】数列满足,且,可得,累加可得:,故选:C【点睛】本题主要考查数列的递推关系式的应用,数列求和的方法,考查转化思想以及计算能力,属于中档题9.已知抛物线的焦点为F,准线为l.若l与双曲线的两条渐近线分别交于点A和点B,且(O为原点)
5、,则双曲线的方程为( )A. B. C. D. 【答案】D【解析】【分析】由抛物线方程可得焦点,准线方程为,由求出,由此能求出双曲线的方程【详解】因为抛物线,所以焦点,准线方程为因为双曲线的渐近线为,准线为所以,又,所以即,所以双曲线的方程为,故选:D10.已知椭圆的上顶点为A,右焦点为F,直线AF与C交于点B.若,则C的离心率为( )A. B. C. D. 【答案】B【解析】【分析】由可知,,设,可求出B点坐标,代入椭圆方程,化简即可求出离心率.【详解】设,因为,所以,由,可得,解得,代入椭圆方程可得,化简得,即,故选:B【点睛】本题主要考查了椭圆的简单几何性质,顶点、焦点坐标,离心率,属于
6、中档题.第II卷(共80分)二、填空题:本大题共6小题,每小题5分,共30分.11.命题“,”的否定是_.【答案】,【解析】【分析】根据含有量词的命题的否定,改变量词,否定结论即可.【详解】由命题“,”知,命题的否定为 “,”故答案为:,【点睛】本题主要考查了命题的否定,属于容易题.12.双曲线的渐近线方程是_.【答案】【解析】【分析】根据双曲线的方程,令即可求出双曲线的渐近线方程.【详解】因为双曲线方程,所以,令,可得,即,故答案为:【点睛】本题主要考查了双曲线的渐近线方程,属于容易题.当双曲线方程为时,只需把换为即可求出渐近线方程.13.设等差数列的前n项和为,若,则的最小值为_.【答案】
7、【解析】【分析】根据等差数列的求和公式,利用,可求出公差,写出,利用二次函数求解即可.【详解】因为,所以,解得,所以,对称轴为,所以当或时,有最小值,故答案为:【点睛】本题主要考查了等差数列的求和公式,涉及二次函数求最值,属于中档题.14.若,且,则的最大值为_.【答案】【解析】【分析】由可根据均值不等式求积的最大值.【详解】因为,且所以,当且仅当时取等号,即,当且仅当时取等号,所以的最大值为,此时,故答案为:【点睛】本题主要考查了均值不等式求最值,属于中档题.15.若抛物线焦点是双曲线的一个焦点,则_.【答案】12【解析】【分析】由题意可知抛物线的焦点为双曲线的右焦点,又由双曲线方程可知,求
8、解即可.【详解】因为抛物线的焦点为,所以双曲线的右焦点为,所以,解得,故答案为:12【点睛】本题主要考查了抛物线的简单几何性质,双曲线的简单几何性质,属于中档题.16.下列命题:设A,B为两个集合,则“”是“”充分不必要条件;,;“”是“”的充要条件;,代数式的值都是质数.其中的真命题是_.(填写序号)【答案】【解析】【分析】根据子集概念,“”是“”的充分必要条件;取特殊值,使不等式成立,判断命题为真;根据不等式性质可知,可判断命题正确;由于n2+n+41=n(n+1)+41,根据乘法分配律和质数的定义得到n=40或n=41时,n2+n+41不是质数,可判断命题错误.【详解】对于根据子集及交集
9、的定义可知,所以“”是“”的充分必要条件;存在特殊值,使不等式成立,判断命题为真;根据不等式性质可知,可判断“”是“”的充要条件正确;由于n2+n+41=n(n+1)+41,根据乘法分配律和质数的定义得到n=40或n=41时,n2+n+41分别能被40或41整除,所以不是质数,可判断命题错误.故答案为:【点睛】本题主要考查了命题,充分条件,必要条件,质数的概念,属于中档题.三、解答题:本大题共4小题,共50分.解答应写出文字说明、证明过程或演算步骤.17.设是等差数列,是等比数列,公比大于0.已知,.(1)求和的通项公式;(2)求数列的前n项和.【答案】(1), ;(2).【解析】【分析】(1
10、)由题意列出关于公差和公比的方程组,求解即可得出通项公式(2)根据错位相减法即可求出数列的和.【详解】(1)设等差数列的公差为d,等比数列的公比为q.依题意,得又因为公比大于0,解得故,.所以,的通项公式为,的通项公式为.(2)由(1)知,记的前n项和为,则记,则,得,,所以.【点睛】本题主要考查了等差等比数列的基本量的计算,错位相减法求和,属于中档题.18.解关于x的不等式【答案】见解析.【解析】试题分析:解题思路:将分解因式得,再讨论1与大小求解集.规律总结:解一元二次不等式,要注意“三个二次”的关系,即一元二次方程、一元二次函数、一元二次不等式之间的关系.注意点:解题中要注意讨论1与的大
11、小.试题解析:,则当时,解集为;当时,解集为;当时,解集为.考点:1.一元二次不等式的解法;2.分类讨论思想.19.设数列的前n项和为,且.数列满足:,且.其中.(1)求,的通项公式;(2)记数列满足,证明:.【答案】(1),;(2)证明见解析.【解析】【分析】(1)根据与的关系,可推出,即数列是公比为2的等比数列,根据知其为等差数列,写出通项公式即可(2)写出,变形为,利用相加相消可求和,即可证明不等式成立.【详解】(1)由 ,可得 ,-得所以数列是公比为2的等比数列,式中令,可得,所以,由易知数列是公差为1的等差数列,又,所以,所以.(2),所以 【点睛】本题主要考查了数列的递推关系,等差
12、数列、等比数列的定义,通项公式,裂项相消求和,属于难题.20.设椭圆上顶点为A,右顶点为B.已知(O为原点).(1)求椭圆的离心率;(2)设点,直线与椭圆交于两个不同点M,N,直线AM与x轴交于点E,直线AN与x轴交于点F,若.求证:直线l经过定点.【答案】(1);(2)证明见解析.【解析】【分析】(1)由知,根据,即可求出离心率(2)由结合(1)可求出椭圆方程,设,得出点坐标,联立与椭圆方程,根据韦达定理可得,利用化简可求m,可求出直线所过定点.【详解】(1)设椭圆的半焦距为c,由已知有,又由,消去b得,解得.所以,椭圆的离心率为;(2)由点知,又所以所以椭圆的方程为,设,则直线AM的方程为,令,得点E的横坐标,所以点,同理,点, 由得,则,所以.所以.解得,此时, 所以直线l经过定点.【点睛】本题主要考查了椭圆的标准方程,椭圆的简单几何性质,直线与椭圆的位置关系,向量的坐标运算,属于难题.