1、高频考点分析不等式问题中“特殊值法”的应用典型例题: 例1. (2012年福建省理5分)下列命题中,真命题是【 】Ax0,0Bx,2xx2Cab0的充要条件是1Da1,b1是ab1的充分条件【答案】D。【考点】必要条件、充分条件与充要条件的判断,全称命题,特称命题,命题的真假判断与应用。【解析】对于A,根据指数函数的性质不存在x0,使得0,因此A是假命题。对于B,当x2时,2xx2,因此B是假命题。对于C,当ab0时,不存在,因此C是假命题。对于D,a1,b1时 ab1,所以a1,b1是ab1的充分条件,因此D是真命题。故选D。例2. (2012年四川省文4分)设为正实数,现有下列命题:若,则
2、;若,则;若,则;若,则。其中的真命题有 。(写出所有真命题的编号)【答案】。【考点】真命题的判定,特殊值法的应用。【解析】对于,为正实数,。 又,。故正确。对于,可以采用特殊值列举法:取,满足为正实数和的条件,但。故错误。对于,可以采用特殊值列举法:取,满足为正实数和的条件,但。故错误。对于,不妨设,由得,。为正实数,。故正确。且,。综上所述,真命题有 。例3. (2012年浙江省理4分)设,若时均有,则 【答案】。【考点】特殊元素法,偶次幂的非负数性质。【解析】时均有,应用特殊元素法,取,得。例4. (2012年四川省理14分)已知为正实数,为自然数,抛物线与轴正半轴相交于点,设为该抛物线
3、在点处的切线在轴上的截距。()用和表示;()求对所有都有成立的的最小值;()当时,比较与的大小,并说明理由。【答案】解:()由已知得,交点A的坐标为,对求导得。 抛物线在点A处的切线方程为,即。()由(1)知,则成立的充要条件是。即知,对于所有的n成立,特别地,取n=2时,得到。当时,。当n=0,1,2时,显然。当时,对所有自然数都成立。满足条件的的最小值是。()由(1)知,则,。下面证明:。首先证明:当0x1时,设函数,则。当时,;当时,在区间(0,1)上的最小值min=g。当0x1时,0,即得。由0a1知0ak1(),。从而。【考点】导数的应用、不等式、数列。【解析】()根据抛物线与x轴正
4、半轴相交于点A,可得A,进一步可求抛物线在点A处的切线方程,从而可得()由()知,则 成立的充要条件是,即知,对所有n成立。当时,;当n=0,1,2时,由此可得的最小值。()由()知,证明当0x1时, 即可证明: 。例5. (2012年四川省文14分)已知为正实数,为自然数,抛物线与轴正半轴相交于点,设为该抛物线在点处的切线在轴上的截距。()用和表示;()求对所有都有成立的的最小值;()当时,比较与的大小,并说明理由。【答案】解:()由已知得,交点A的坐标为,对求导得。 抛物线在点A处的切线方程为,即。()由(1)知,则成立的充要条件是。即知,对于所有的n成立,特别地,取n=1时,得到。当时,。当n=0时,。当时,对所有自然数都成立。满足条件的的最小值是3。()由(1)知,下面证明:。首先证明:当0x1时, ,设函数,则。当时,;当时,在区间(0,1)上的最小值min=g。当0x1时,0,即得。由0a1知0ak1(),。从而。【考点】导数的应用、不等式、数列。【解析】()根据抛物线与x轴正半轴相交于点A,可得A,进一步可求抛物线在点A处的切线方程,从而可得()由()知,则成立的充要条件是,即知,对所有n成立。当时,;当n=0时,由此可得的最小值。()由()知,证明当0x1时,即可证明:。