ImageVerifierCode 换一换
格式:DOC , 页数:12 ,大小:422.50KB ,
资源ID:663850      下载积分:4 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-663850-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(吉林省长春十一中2015-2016学年高一下学期第一次月考数学试卷(文科) WORD版含解析.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

吉林省长春十一中2015-2016学年高一下学期第一次月考数学试卷(文科) WORD版含解析.doc

1、2015-2016学年吉林省长春十一中高一(下)第一次月考数学试卷(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1下列结论成立的是()ABCD不能确定2下列不等式中,对任意xR都成立的是()ABx2+12xClg(x2+1)lg2xD13已知等差数列an中a1=20,an=54,Sn=999,则n=()A27B28C29D304在等差数列an中,a1+a15=3,则S15=()A45B30C22.5D215已知an是等差数列,且a4+4是a2+2和a6+6的等比中项,则an的公差d=()A1B1C2D26等比数列an的前n项和

2、为,则实数a的值是()A3B3C1D17在ABC中,已知,B=45 则A角的度数为()A60B120C60或120D308已知ABC的面积为,则角C的度数是()A45B60C120D1359三角形的两边边长分别为5和3,它们夹角的余弦是方程5x27x6=0的根,则三角形的另一边长为()A52B2C16D410已知ABC内角A,B,C的对边分别为a,b,c,且=,则B=()ABCD11已知ABC分别为a,b,c,边长c=2,C=,若a+b=ab,则ABC的面积为()A1B2CD212设函数,a,b,c分别是ABC的三个内角A,B,C所对的边,已知,其中角C为锐角,则sinA=()ABCD二、填空

3、题(每题5分,满分20分,将答案填在答题纸上)13在ABC中,已知,则边长b等于14已知数列an满足a1=1,an+1=,(nN+),则an=15先画一个边长为2的正方形,再将这个正方形的各边中点相连得到第2个正方形,依此类推,则第10个正方形的面积为(用最简分数表示)16已知等差数列an的首项和公差均为,则数列的前100项和S100=三、解答题(本大题共4小题,共40分.解答应写出文字说明、证明过程或演算步骤.)17已知等差数列an中,a1=1,a3=3数列an的前n项和Sn(1)求数列an的通项公式(2)若Sk=35,求k的值18在ABC中,角A,B,C的对角边分别为a,b,c,B=,co

4、sA=,b=(1)求sinC的值(2)求ABC的面积19如图,A、B、C、D都在同一个与水平面垂直的平面内,B、D为两岛上的两座灯塔的塔顶测量船于水面A处测得B点和D点的仰角分别为75,30,于水面C处测得B点和D点的仰角均为60,AC=0.1 km试探究图中B,D间距离与另外哪两点间距离相等,然后求B,D的距离(计算结果精确到0.01 km,1.414,2.449)20已知数列bn前n项和Sn,且b1=1,(1)求b2,b3,b4的值;(2)求bn的通项公式附加题21已知f(x)=mx(m为常数,m0且m1)设f(a1),f(a2),f(an),(nN*)是首项为m2,公比为m的等比数列()

5、求证:数列an是等差数列;()若bn=anf(an),且数列bn的前n项和为Sn,当m=2时,求Sn2015-2016学年吉林省长春十一中高一(下)第一次月考数学试卷(文科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1下列结论成立的是()ABCD不能确定【考点】不等式的基本性质【分析】由于22,即可得出结论【解答】解:由于22,7+10+23+14+2,故选:A2下列不等式中,对任意xR都成立的是()ABx2+12xClg(x2+1)lg2xD1【考点】不等式比较大小【分析】可采用特值排除法,例如令x=0,可排除

6、A,C,令x=1可排除B,从而可得答案【解答】解:xR,令x=0,可排除A,C;再令x=1可排除B,而1(x2)20,显然成立故选D3已知等差数列an中a1=20,an=54,Sn=999,则n=()A27B28C29D30【考点】等差数列的前n项和【分析】由已知得=,由此能求出n【解答】解:等差数列an中a1=20,an=54,Sn=999,=,解得n=27故选:A4在等差数列an中,a1+a15=3,则S15=()A45B30C22.5D21【考点】等差数列的通项公式【分析】利用等差数列的前n项和公式直接求解【解答】解:在等差数列an中,a1+a15=3,S15=(a1+a15)=22.5

7、故选:C5已知an是等差数列,且a4+4是a2+2和a6+6的等比中项,则an的公差d=()A1B1C2D2【考点】等差数列的通项公式【分析】a4+4是a2+2和a6+6的等比中项,可得: =(a2+2)(a6+6),化为=(a42d+2)(a4+2d+6),解出d即可【解答】解:a4+4是a2+2和a6+6的等比中项,=(a2+2)(a6+6),=(a42d+2)(a4+2d+6),化为(d+1)2=0,解得d=1故选:B6等比数列an的前n项和为,则实数a的值是()A3B3C1D1【考点】等比数列的前n项和【分析】由于等比数列的前n项和是,得到若,则a=3【解答】解:由于等比数列an的前n

8、项和为,则数列的公比不为1,且=3n+1a=33na,所以a=3故选 B7在ABC中,已知,B=45 则A角的度数为()A60B120C60或120D30【考点】正弦定理【分析】由B的度数求出sinB的值,同时根据a大于b,利用大边对大角得到A大于B,由a,b及sinB的值,利用正弦定理求出sinA的值,再由A的范围,利用特殊角的三角函数值即可求出A的度数【解答】解:a=,b=,B=45,由正弦定理=得:sinA=,45A180,A的度数为60或120故选C8已知ABC的面积为,则角C的度数是()A45B60C120D135【考点】余弦定理【分析】根据ABC的面积为:(a2+b2c2)=abs

9、inC,求得c2=a2+b22absinC,再由余弦定理得tanC=1,由此求得C的值【解答】解:ABC的面积为(a2+b2c2)=absinC,c2=a2+b22absinC又根据余弦定理得:c2=a2+b22abcosC,2absinC=2abcosC,即sinC=cosC,tanC=1,C=45,故选:A9三角形的两边边长分别为5和3,它们夹角的余弦是方程5x27x6=0的根,则三角形的另一边长为()A52B2C16D4【考点】余弦定理;一元二次方程的根的分布与系数的关系【分析】解方程5x27x6=0可得cos=,利用余弦定理求出第三边的长即可【解答】解:解方程5x27x6=0可得此方程

10、的根为2或,故夹角的余弦cos=,由余弦定理可得三角形的另一边长为: =2故选B10已知ABC内角A,B,C的对边分别为a,b,c,且=,则B=()ABCD【考点】正弦定理【分析】利用正弦定理把等式中角的正弦转化成边,整理求得a,b和c的关系式,代入余弦定理求得cosB的值,进而求得B【解答】解:=,且=,整理得a2+c2b2=ac,cosB=,0B,B=故选:C11已知ABC分别为a,b,c,边长c=2,C=,若a+b=ab,则ABC的面积为()A1B2CD2【考点】余弦定理【分析】由已知及余弦定理可求a2b23ab4=0,解得ab的值,利用三角形面积公式即可计算得解【解答】解:在ABC中,

11、c=2,C=,a+b=ab,由余弦定理c2=a2+b22abcosC,可得:4=a2+b2ab=(a+b)23ab=a2b23ab,a2b23ab4=0,解得:ab=4或1(舍去),SABC=absinC=故选:C12设函数,a,b,c分别是ABC的三个内角A,B,C所对的边,已知,其中角C为锐角,则sinA=()ABCD【考点】余弦函数的图象【分析】首先化简函数f(x),根据f()=求出角C的正弦值,进而求出角C的大小;然后求出角B的正弦、余弦,最后根据两角和的正弦公式,求出sinA的值即可【解答】解:f(x)=cos(2x+)+sin2x=cos2xsin2x+=sin2x,f()=sin

12、C=,sinC=C为锐角,C=,因为在ABC 中,cosB=,所以sinB=,所以sinA=sin(B+C)=sinBcosC+cosBsinC=故选:A二、填空题(每题5分,满分20分,将答案填在答题纸上)13在ABC中,已知,则边长b等于7【考点】余弦定理【分析】由已知利用余弦定理即可计算得解b的值【解答】解:,由余弦定理可得:b2=a2+c22accoB=92+(2)22=147,解得:b=7故答案为:714已知数列an满足a1=1,an+1=,(nN+),则an=【考点】数列递推式【分析】an+1=,可得=,利用“累乘求积”即可得出【解答】解:an+1=,=,an=a1=1=,n=1时

13、也成立an=故答案为:15先画一个边长为2的正方形,再将这个正方形的各边中点相连得到第2个正方形,依此类推,则第10个正方形的面积为(用最简分数表示)【考点】归纳推理【分析】根据正方形的面积成等比数列求出第10个正方形的面积即可【解答】解:第一个正方形的面积是2,第二个正方形的面积是,第三个正方形的面积是,故第n个正方形的面积是:2,故第10个正方形的面积是:2=,故答案为:16已知等差数列an的首项和公差均为,则数列的前100项和S100=【考点】数列的求和【分析】推导出=4(),由此利用裂项求和法能求出数列的前100项和【解答】解:等差数列an的首项和公差均为,an=,=4(),数列的前1

14、00项和:S100=4(1)=4(1)=故答案为:三、解答题(本大题共4小题,共40分.解答应写出文字说明、证明过程或演算步骤.)17已知等差数列an中,a1=1,a3=3数列an的前n项和Sn(1)求数列an的通项公式(2)若Sk=35,求k的值【考点】等差数列的前n项和【分析】(1)由题意可得公差d,代入通项公式可得;(2)由求和公式可得:Sk=35,解之即可【解答】解:(1)由题意可得数列的公差d=2,故数列an的通项公式an=12(n1)=32n;(2)由等差数列的求和公式可得:Sk=35,化简可得k22k35=0解之可得k=7,或k=5(舍去)故k的值为:718在ABC中,角A,B,

15、C的对角边分别为a,b,c,B=,cosA=,b=(1)求sinC的值(2)求ABC的面积【考点】正弦定理;余弦定理【分析】(1)运用同角的平方关系和两角和的正弦公式计算即可得到;(2)运用正弦定理和三角形的面积公式计算即可得到【解答】解:(1)由cosA=,得sinA=,即有sinC=sin(A+B)=sinAcosB+cosAsinB=+=;(2)由正弦定理可得,a=,则ABC的面积为S=absinC=19如图,A、B、C、D都在同一个与水平面垂直的平面内,B、D为两岛上的两座灯塔的塔顶测量船于水面A处测得B点和D点的仰角分别为75,30,于水面C处测得B点和D点的仰角均为60,AC=0.

16、1 km试探究图中B,D间距离与另外哪两点间距离相等,然后求B,D的距离(计算结果精确到0.01 km,1.414,2.449)【考点】解三角形的实际应用【分析】在ACD中,DAC=30推断出CD=AC,同时根据CB是CAD底边AD的中垂线,判断出BD=BA,进而在ABC中利用余弦定理求得AB答案可得【解答】解:在ACD中,DAC=30,ADC=60DAC=30,所以CD=AC=0.1又BCD=1806060=60,故CB是CAD底边AD的中垂线,所以BD=BA、在ABC中, =,sin215=,可得sin15=,即AB=,因此,BD=0.33km故B、D的距离约为0.33km20已知数列bn

17、前n项和Sn,且b1=1,(1)求b2,b3,b4的值;(2)求bn的通项公式【考点】数列递推式【分析】(1)由b1=1,分别取n=1,2,3,即可得出(2)利用递推关系即可得出【解答】解:(1)b1=1,b2=,b3=b4=(2)n2时,bn+1bn=,可得bn+1=bn,数列bn是等比数列,公比为bn=1=附加题21已知f(x)=mx(m为常数,m0且m1)设f(a1),f(a2),f(an),(nN*)是首项为m2,公比为m的等比数列()求证:数列an是等差数列;()若bn=anf(an),且数列bn的前n项和为Sn,当m=2时,求Sn【考点】数列的求和;等差关系的确定【分析】(I)根据

18、等比数列的通项公式,可得f(an)=m2mn1=mn+1,从而可得an=n+1,进而可证数列an是以2为首项,1为公差的等差数列;(II)当m=2时,bn=(n+1)2n+1,利用错位相减法可求数列的和;【解答】证明:(I)由题意f(an)=m2mn1=mn+1,即an=n+1,an+1an=1,数列an是以2为首项,1为公差的等差数列解:(II)由题意bn=anf(an)=(n+1)mn+1,当m=2时,bn=(n+1)2n+1Sn=222+323+424+(n+1)2n+1式两端同乘以2,得2Sn=223+324+425+n2n+1+(n+1)2n+2并整理,得Sn=2222324252n+1+(n+1)2n+2=22(22+23+24+2n+1)+(n+1)2n+2=22+(n+1)2n+2=22+22(12n)+(n+1)2n+2=2n+2n2016年11月3日

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3