1、一、选择题1.【2012高考真题浙江理8】如图,F1,F2分别是双曲线C:(a,b0)的左、右焦点,B是虚轴的端点,直线F1B与C的两条渐近线分别交于P,Q两点,线段PQ的垂直平分线与x轴交与点M,若|MF2|=|F1F2|,则C的离心率是A. B。 C. D. 2.【2012高考真题新课标理8】等轴双曲线的中心在原点,焦点在轴上,与抛物线的准线交于两点,;则的实轴长为( ) 3.【2012高考真题新课标理4】设是椭圆的左、右焦点,为直线上一点,是底角为的等腰三角形,则的离心率为( ) 4.【2012高考真题四川理8】已知抛物线关于轴对称,它的顶点在坐标原点,并且经过点。若点到该抛物线焦点的距
2、离为,则( )A、 B、 C、 D、 【答案】B【解析】设抛物线方程为,则点焦点,点到该抛物线焦点的距离为, , 解得,所以.5.【2012高考真题山东理10】已知椭圆的离心学率为.双曲线的渐近线与椭圆有四个交点,以这四个焦点为顶点的四边形的面积为16,则椭圆的方程为(A) (B) (C) (D)6.【2012高考真题湖南理5】已知双曲线C :-=1的焦距为10 ,点P (2,1)在C 的渐近线上,则C的方程为A-=1 B.-=1 C.-=1 D.-=17.【2012高考真题福建理8】已知双曲线的右焦点与抛物线y2=12x的焦点重合,则该双曲线的焦点到其渐近线的距离等于A. B. C.3 D.
3、58.【2012高考真题安徽理9】过抛物线的焦点的直线交抛物线于两点,点是原点,若,则的面积为( ) 9.【2012高考真题全国卷理3】 椭圆的中心在原点,焦距为4 一条准线为x=-4 ,则该椭圆的方程为A +=1 B +=1C +=1 D +=1【答案】C【解析】椭圆的焦距为4,所以因为准线为,所以椭圆的焦点在轴上,且,所以,所以椭圆的方程为,选C.10.【2012高考真题全国卷理8】已知F1、F2为双曲线C:x-y=2的左、右焦点,点P在C上,|PF1|=|2PF2|,则cosF1PF2=(A) (B) (C) (D)11.【2012高考真题北京理12】在直角坐标系xOy中,直线l过抛物线
4、=4x的焦点F.且与该撇物线相交于A、B两点.其中点A在x轴上方。若直线l的倾斜角为60.则OAF的面积为 二、填空题13.【2012高考真题四川理15】椭圆的左焦点为,直线与椭圆相交于点、,当的周长最大时,的面积是_。【答案】3【命题立意】本题主要考查椭圆的定义和简单几何性质、直线与圆锥曲线的位置关系、,考查推理论证能力、基本运算能力,以及数形结合思想,难度适中.【解析】当直线过右焦点时的周长最大,;将带入解得;所以.14.【2012高考真题陕西理13】右图是抛物线形拱桥,当水面在时,拱顶离水面2米,水面宽4米,水位下降1米后,水面宽 米.【答案】.15.【2012高考真题重庆理14】过抛物
5、线的焦点作直线交抛物线于两点,若则= . 16.【2012高考真题辽宁理15】已知P,Q为抛物线上两点,点P,Q的横坐标分别为4,2,过P、Q分别作抛物线的切线,两切线交于A,则点A的纵坐标为_。【答案】4【解析】因为点P,Q的横坐标分别为4,2,代人抛物线方程得P,Q的纵坐标分别为8,2.由所以过点P,Q的抛物线的切线的斜率分别为4,2,所以过点P,Q的抛物线的切线方程分别为联立方程组解得故点A的纵坐标为417.【2012高考真题江西理13】椭圆 的左、右顶点分别是A,B,左、右焦点分别是F1,F2。若,成等比数列,则此椭圆的离心率为_.18.【2012高考江苏8】(5分)在平面直角坐标系中
6、,若双曲线的离心率为,则的值为 三、解答题19.【2012高考江苏19】(16分)如图,在平面直角坐标系中,椭圆的左、右焦点分别为,已知和都在椭圆上,其中为椭圆的离心率(1)求椭圆的方程;(2)设是椭圆上位于轴上方的两点,且直线与直线平行,与交于点P(i)若,求直线的斜率;(ii)求证:是定值 (i)由得,。解得=2。 注意到,。 直线的斜率为。 (ii)证明:,即。 。 由点在椭圆上知,。20.【2012高考真题浙江理21】(本小题满分15分)如图,椭圆C:(ab0)的离心率为,其左焦点到点P(2,1)的距离为不过原点O的直线l与C相交于A,B两点,且线段AB被直线OP平分()求椭圆C的方程;() 求ABP的面积取最大时直线l的方程()易得直线OP的方程:yx,设A(xA,yA),B(xB,yB),R(x0,y0)其中y0x0A,B在椭圆上,.