ImageVerifierCode 换一换
格式:DOCX , 页数:8 ,大小:183.25KB ,
资源ID:661249      下载积分:6 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-661249-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(新教材2022版高考人教A版数学一轮复习课时规范练53 二项分布与超几何分布、正态分布 WORD版含解析.docx)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

新教材2022版高考人教A版数学一轮复习课时规范练53 二项分布与超几何分布、正态分布 WORD版含解析.docx

1、课时规范练53二项分布与超几何分布、正态分布基础巩固组1.袋中装有2个红球,3个黄球,有放回地抽取3次,每次抽取1球,则3次中恰有2次抽到黄球的概率是()A.25B.35C.18125D.541252.(2020江西宜春高三质检)某高三学生进行考试心理素质测试,场景相同的条件下每次通过测试的概率为45,则连续测试4次,至少有3次通过的概率为()A.512625B.256625C.64625D.641253.从4名男生和2名女生中任选3人参加演讲比赛,设随机变量表示所选3人中女生的人数,则P(1)等于()A.15B.25C.35D.454.(2020福建福州高三检测)某市一次高三年级数学统测,经

2、抽样分析,成绩X近似服从正态分布N(80,2),且P(75X80)=0.1.该市某校有350人参加此次统测,估计该校数学成绩不低于85分的人数为()A.140B.105C.70D.355.(2020河北沧州高三模拟)位于坐标原点的一个质点P按下述规则移动:质点每次移动一个单位,移动的方向为向上或向右,并且向上、向右移动的概率都是12,则质点P移动六次后位于点(2,4)的概率是()A.126B.C64124C.C62126D.C62C641266.一个袋中有4个红球,3个黑球,小明从袋中随机取球,设取到一个红球得2分,取到一个黑球得1分,从袋中任取4个球,则小明得分大于6分的概率是()A.133

3、5B.1435C.1835D.22357.(多选)(2020山东泰安高三二模)“杂交水稻之父”袁隆平一生致力于杂交水稻技术的研究、应用与推广,发明了“三系法”籼型杂交水稻,成功研究出“两系法”杂交水稻,创建了超级杂交稻技术体系,为我国粮食安全、农业科学发展和世界粮食供给做出了杰出贡献.某杂交水稻种植研究所调查某地水稻的株高,得出株高X(单位:cm)服从正态分布,其密度曲线函数为f(x)=1102e-(x-100)2200,x(-,+),则下列说法正确的是()A.该地水稻的平均株高为100 cmB.该地水稻株高的方差为10C.随机测量一株水稻,其株高在120 cm以上的概率比株高在70 cm以下

4、的概率大D.随机测量一株水稻,其株高在(80,90)和在(100,110)(单位:cm)的概率一样大8.设事件A在每次试验中发生的概率相同,且在三次独立重复试验中,若事件A至少发生一次的概率为6364,则事件A恰好发生一次的概率为()A.14B.34C.964D.27649.某食品厂为了检查一条自动包装流水线的生产情况,随机抽取该流水线上的40件产品作为样本称出它们的质量(单位:克),质量的分组区间为490,495),495,500),500,505),505,510),510,515,由此得到样本的频率分布直方图,如图所示.(1)根据频率分布直方图,求质量超过500克的产品数量;(2)在上述

5、抽取的40件产品中任取2件,设Y为质量超过505克的产品数量,求Y的分布列.10.(2019全国2,理18)11分制乒乓球比赛,每赢一球得1分.当某局打成1010平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方1010平后,甲先发球,两人又打了X个球该局比赛结束.(1)求P(X=2);(2)求事件“X=4且甲获胜”的概率.综合提升组11.(多选)(2020山东潍坊高三检测)掷一个质地不均匀的硬币6次,每次掷出正面的概率均为23,恰好出现k次正面的概率记为Pk,则下

6、列说法正确的是()A.P1=P5B.P1P5C.k=16Pk=1D.P0,P1,P2,P6中最大值为P412.一个盒子中有大小形状完全相同的m个红球和6个黄球,现从中有放回地摸取5次,每次随机摸出一个球,设摸到红球的个数为X,若E(X)=3,则m=,P(X=2)=.13.质检部门从某超市销售的甲、乙两种食用油中分别随机抽取100桶检测某项质量指标,由检测结果得到如图的频率分布直方图:甲乙(1)写出频率分布直方图(甲)中a的值;记甲、乙两种食用油100桶样本的质量指标的方差分别为s12,s22,试比较s12,s22的大小(只要求写出答案);(2)估计在甲、乙两种食用油中各随机抽取1桶,恰有一桶的

7、质量指标大于20,且另一桶的质量指标不大于20的概率;(3)由频率分布直方图可以认为,乙种食用油的质量指标值Z服从正态分布N(,2).其中近似为样本平均数x,2近似为样本方差s22,设X表示从乙种食用油中随机抽取10桶,其质量指标值位于14.55,38.45的桶数,求X的数学期望.注:同一组数据用该区间的中点值作代表,计算得s2=142.7511.95;若ZN(,2),则P(-Z+)0.682 7,P(-2Z+2)0.954 5.创新应用组14.为了引导居民合理用电,国家决定实行合理的阶梯电价,居民用电原则上以住宅为单位(一套住宅为一户).阶梯级别第一阶梯第二阶梯第三阶梯月用电范围(度)(0,

8、210(210,400(400,+)某市随机抽取10户同一个月的用电情况,得到统计表如下:居民用电户编号12345678910用电量(度)538690124132200215225300410(1)若规定第一阶梯电价每度0.5元,第二阶梯超出第一阶梯的部分每度0.6元,第三阶梯超出第二阶梯的部分每度0.8元,试计算用电410度时应交电费多少元?(2)现要在这10户家庭中任意选取3户,求取到第二阶梯电量的用户数的分布列与数学期望;(3)以表中抽到的10户作为样本估计全市的居民用电,现从全市中依次抽取10户,若抽到k户用电量为第一阶梯的可能性最大,求k的值.15.山东省高考改革试点方案规定:从20

9、17年秋季高中入学的新生开始,不分文理科;2020年开始,高考总成绩由语数外3门统考科目和物理、化学等六门选考科目构成.将每门选考科目的考生原始成绩从高到低划分为A、B+、B、C+、C、D+、D、E共8个等级.参照正态分布原则,确定各等级人数所占比例分别为3%、7%、16%、24%、24%、16%、7%、3%.选考科目成绩计入考生总成绩时,将A至E等级内的考生原始成绩,依照等比例转换法则,分别转换到91,100、81,90、71,80、61,70、51,60、41,50、31,40、21,30八个分数区间,得到考生的等级成绩.某校高一年级共2 000人,为给高一学生合理选科提供依据,对六个选考

10、科目进行测试,其中物理考试原始成绩基本服从正态分布N(60,169).(1)估计物理原始成绩在区间47,86的人数;(2)按高考改革方案,若从全省考生中随机抽取3人,记X表示这3人中等级成绩在区间61,80的人数,求X的分布列和数学期望.(附:若随机变量N(,2),则P(-+)0.682 1,P(-2+2)0.954 5,P(-3+3)0.997 3)参考答案课时规范练53二项分布与超几何分布、正态分布1.D每次取到黄球的概率为35,3次中恰有2次抽到黄球的概率为C323521-35=54125.2.A4次独立重复实验,故概率为C4345315+C44454=512625.3.DP(1)=1-

11、P(=2)=1-C41C22C63=45.4.A因为X近似服从正态分布N(80,2),所以P(80X85)=P(756)=P(X=7)+P(X=8)=1235+135=1335.7.ACf(x)=1102e-(x-100)2200,故=100,2=100,故A正确,B错误;P(X120)=P(XP(X70),故C正确;根据正态分布的对称性知P(100X110)=P(90XP(80X90),故D错误.8.C假设事件A在每次试验中发生说明试验成功,设每次试验成功的概率为p,由题意得事件A发生的次数XB(3,p),则有1-(1-p)3=6364,得p=34,故事件A恰好发生一次的概率为C31341-

12、342=964.9.解(1)质量超过500克的产品数量是40(0.075+0.055+0.015)=26(件);(2)由题意知Y的所有可能取值为0,1,2.质量超过505克的产品数量是40(0.055+0.015)=12(件),质量未超过505克的产品数量是28件.P(Y=0)=C282C402=63130,P(Y=1)=C121C281C402=56130=2865,P(Y=2)=C122C402=11130,Y的分布列为Y012P6313028651113010.解(1)X=2就是1010平后,两人又打了两个球该局比赛结束,则这两个球均由甲得分,或者均由乙得分.因此P(X=2)=0.50.

13、4+(1-0.5)(1-0.4)=0.5.(2)X=4且甲获胜,就是1010平后,两人又打了4个球该局比赛结束,且这4个球的得分情况为:前两球是甲、乙各得1分,后两球均为甲得分.因此所求概率为0.5(1-0.4)+(1-0.5)0.40.50.4=0.1.11.BDP1=C61231-235=4243,P5=C652351-231=64243,P1s22.(2)设事件A:在甲种食用油中随机抽取1桶,其质量指标不大于20,事件B:在乙种食用油中随机抽取1桶,其质量指标不大于20,事件C:在甲、乙两种食用油中各随机抽取1桶,恰有一桶的质量指标大于20,且另一桶的质量指标不大于20,则P(A)=0.

14、20+0.10=0.3,P(B)=0.10+0.20=0.3,所以P(C)=P(A)P(B)+P(A)P(B)=0.42.(3)x=(50.01+150.02+250.03+350.025+450.015)10=26.5,s211.95,由条件得ZN(26.5,142.75),从而P(26.5-11.95Z26.5+11.95)0.6827,从乙种食用油中随机抽取10桶,其质量指标值位于14.55,38.45的概率约为0.6827,依题意得XB(10,0.6827),E(X)=100.6827=6.827.14.解(1)2100.5+(400-210)0.6+(410-400)0.8=227(

15、元).(2)设取到第二阶梯电量的用户数为,可知第二阶梯电量的用户有3户,则可取0,1,2,3,P(=0)=C73C103=724,P(=1)=C72C31C103=2140,P(=2)=C71C32C103=740,P(=3)=C33C103=1120.故的分布列是0123P72421407401120所以E()=0724+12140+2740+31120=910.(3)可知从全市中抽取10户的用电量为第一阶梯,满足XB10,35,可知P(X=k)=C10k35k2510-k(k=0,1,2,3,10)由C10k(35)k(25)10-kC10k+1(35)k+1(25)10-(k+1),C1

16、0k(35)k(25)10-kC10k-1(35)k-1(25)10-(k-1),解得285k335,kN*,所以当k=6时,用电量为第一阶梯的可能性最大,所以k=6.15.解(1)因为物理原始成绩N(60,132),所以P(4786)=P(4760)+P(6086)=12P(60-1360+13)+12P(60-21360+213)0.68272+0.95452=0.8186.所以物理原始成绩在(47,86)的人数约为20000.81861637(人).(2)由题意得,随机抽取1人,其成绩在区间61,80内的概率为25.所以随机抽取三人,则X的所有可能取值为0,1,2,3,且XB3,25,所以P(X=0)=353=27125,P(X=1)=C3125352=54125,P(X=2)=C3225235=36125,P(X=3)=253=8125.所以X的分布列为X0123P2712554125361258125所以数学期望E(X)=325=65.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3