收藏 分享(赏)

《高考复习方案》2016高考数学理(课标通用)二轮专题限时集训:专题六 函数与方程﹑函数模型及其应用 WORD版含解析.doc

上传人:高**** 文档编号:657574 上传时间:2024-05-29 格式:DOC 页数:7 大小:94KB
下载 相关 举报
《高考复习方案》2016高考数学理(课标通用)二轮专题限时集训:专题六 函数与方程﹑函数模型及其应用 WORD版含解析.doc_第1页
第1页 / 共7页
《高考复习方案》2016高考数学理(课标通用)二轮专题限时集训:专题六 函数与方程﹑函数模型及其应用 WORD版含解析.doc_第2页
第2页 / 共7页
《高考复习方案》2016高考数学理(课标通用)二轮专题限时集训:专题六 函数与方程﹑函数模型及其应用 WORD版含解析.doc_第3页
第3页 / 共7页
《高考复习方案》2016高考数学理(课标通用)二轮专题限时集训:专题六 函数与方程﹑函数模型及其应用 WORD版含解析.doc_第4页
第4页 / 共7页
《高考复习方案》2016高考数学理(课标通用)二轮专题限时集训:专题六 函数与方程﹑函数模型及其应用 WORD版含解析.doc_第5页
第5页 / 共7页
《高考复习方案》2016高考数学理(课标通用)二轮专题限时集训:专题六 函数与方程﹑函数模型及其应用 WORD版含解析.doc_第6页
第6页 / 共7页
《高考复习方案》2016高考数学理(课标通用)二轮专题限时集训:专题六 函数与方程﹑函数模型及其应用 WORD版含解析.doc_第7页
第7页 / 共7页
亲,该文档总共7页,全部预览完了,如果喜欢就下载吧!
资源描述

1、专题限时集训(六) 基础演练夯知识1若方程ln x2x100的解为x0,则大于x0的最小整数是()A3 B4 C5 D62已知实数a,b满足2a3,3b2,则函数f(x)axxb的零点所在区间是()A(2,1) B(1,0)C(0,1) D(1,2)3某地区的一种特色水果上市时间仅能持续几个月,预测上市初期和后期会因供不应求使价格呈连续上涨态势,而中期又会因供大于求使价格连续下跌为了准确研究价格走势,下面给出的四种价格模拟函数中最合适的是(其中p,q为常数,且q1,x0,5,x0表示4月1日,x1表示5月1日,依此类推)()Af(x)pqx Bf(x)px2qx1Cf(x)x(xq)2p Df

2、(x)pln xqx24已知函数f(x)xx,其中x表示不超过实数x的最大整数若关于x的方程f(x)kxk有三个不同的实根,则实数k的取值范围是()A1,)(, B(1,)C,)(,1 D(,1)5一个人喝了150 mL啤酒后,血液中的酒精含量上升到0.48 mg/mL,在停止喝酒后,血液中的酒精含量每小时减少一半若规定:驾驶员血液中的酒精含量不得超过0.08 mg/mL,则此人至少_小时后才能驾驶汽车(精确到1小时) 提升训练强能力6若直线ykx与曲线ye|ln x|x2|有3个公共点,则实数k的取值范围是()A(0,1) B(0,1C(1,) D1,)7某种商品原来的定价为每件p元,每月能

3、卖出n件若商店把定价上涨10x%,则每月卖出的数量将减少10y%,而销售额变成原来的z倍若yx,则使销售额比原来有所增加的x的取值范围是()A(0,3) B(1,4) C(0,5) D(1,5)8某医药研究所研发出一种新药,成年人按规定的剂量服用后,据检测,每毫升血液中的含药量y(mg)与时间t(h)之间的关系如图Z61所示据进一步测定,当每毫升血液中的含药量不少于0.25 mg时,治疗疾病有效,则服药一次,治疗疾病有效的时间为()图Z61A4 h B4 hC4 h D5 h9已知函数f(x)x33x,xR,若方程f(x)k|x|恰有3个互异的实数根,则实数k的取值范围是()A.B.C(,6)

4、D.(6,)10已知函数f(x)若函数yf(x)kx有3个零点,则实数k的取值范围是_11某同学为了研究函数f(x)(0x1)的性质,构造了如图Z62所示的两个边长为1的正方形ABCD和BEFC,点P是BC边上的一个动点设|CP|x,则f(x)|AP|PF|.(1)f(x)min_;(2)方程f(x)的解的个数是_图Z6212已知函数f(x)1x,且函数f(x)的零点均在区间a,b(a0且a1,函数f(x)loga(x1),g(x)loga,记F(x)2f(x)g(x)(1)求函数F(x)的定义域及零点;(2)若关于x的方程F(x)m0在区间0,1)上仅有一解,求实数m的取值范围15甲、乙两人

5、从A地往同一方向出发,甲比乙先行1小时,t(单位:h)表示甲行走的时间,已知甲行走的路程S1(单位:km)与t2成正比,当t2时,S12;乙行走的路程S2(单位:km)与时间t的关系式为S2(1)求甲行走的路程S1与时间t的关系式;(2)若t0,3,求当t为何值时两人之间相距最远(参考数据:ln 20.7,ln 31.1)专题限时集训(六) 基础演练1C解析 由ln x2x100,得ln x102x.分别作出函数yln x和y102x的图像,如图所示观察可得两图像的交点的横坐标在区间(4,5)内,则大于x0的最小整数是5.2B解析 因为2a3,3b2,所以a1,0b1.又f(x)axxb,所以

6、f(x)在R上单调递增,且f(1)1b0,从而由零点存在性定理可知f(x)在区间(1,0)内存在零点3C解析 分析各选项函数的单调性可知,A中需p0,f(x)是单调递增函数;B是图像先升后降或图像先降后升的函数;对D中的函数求导,得f(x)2qx,令f(x)2qx0,因为x0,所以函数f(x)没有极值点或者只有一个极值点,其图像不具备先升后降然后再升的特征综上可知只有C符合条件4B解析 当0x1时,f(x)x.又f(x1)(x1)x1xxf(x),故函数f(x)是以1为周期的周期函数在同一坐标系中,分别作出函数yf(x),ykxk的图像,可知当方程f(x)kxk有三个不同的实根时,k满足3kk

7、1且2kk1,或者3kk1且2kk1,解得k或1k.53解析 设至少x小时后才能驾驶汽车,则此人喝了150 mL啤酒后,经过x小时后血液中的酒精含量为0.48(mg/mL)依题意有0.480.08,求得xlog,因为logloglog,且xN,所以x的最小整数值为3. 提升训练6A解析 ye|ln x|x2|画出这个函数的图像,如图所示当直线ykx经过点(2,2)时,k1,由图像可知,如果两个函数的图像有3个公共点,则直线ykx的斜率必须介于0,1之间,所以0k1,解得0x1时,令,得1时,g(x)(x)2;当x时,g(x)(x)2.作出函数g(x)的图像如图所示易知当6k时,直线yk与g(x

8、)的图像有2个交点,即方程f(x)k|x|有3个互异的实数根10.解析 因为f(0)ln 10,所以x0是函数yf(x)kx的一个零点当x0时,由f(x)kx得x2xkx,即xk,此时yf(x)kx在(,0)上有一个零点;当x0时,f(x)ln(x1),f(x)(0,1),要使函数yf(x)kx在x0时有一个零点,则0k1.综上可知k,由(1)可知f(x)min,所以方程f(x)的解的个数为2.12解析 因为f(x)1x,所以当x1时,f(x)1xx2x3x2012x2013x20140,而当x1时,f(x)20150,所以f(x)0对任意xR恒成立,即函数f(x)是(,)上的增函数因为f(1

9、)(11)0,所以函数f(x)在R上有唯一零点x0(1,0),所以ba的最小值为0(1)1,最小半径r1,可得面积的最小值为.13解:(1)当h1时,跳水曲线的最高点为(3,4),设跳水曲线所在抛物线的方程为ya(x3)24.将A(2,3)的坐标代入,得3a(23)24,解得a1.所以当h1时,跳水曲线所在抛物线的方程为y(x3)24.(2)由题可知跳水曲线的最高点为(2h,4),设跳水曲线的方程为yax(2h)24.将A(2,3)的坐标代入yax(2h)24,整理得ah21,故yf(x)ax(2h)24x(2h)24,由题意可得yf(x)在区间5,6内有一个零点,则又h1,解得1h.因此为了

10、达到比较好的训练效果,h的取值范围是.14解:(1)已知F(x)2f(x)g(x)2loga(x1)loga(a0且a1)由解得1x1,则当m0时,方程仅有一解;若0a1,则当m0时,方程仅有一解15解:(1)已知甲行走的路程S1与t2成正比,则S1kt2(k为常数,k0)又t2时,S12,即2k22,解得k.所以甲行走的路程S1与时间t的关系式为S1t2(t0)(2)设函数f(t)S1S2两人之间的距离L(t)|f(t)|.当t0,1)时,f(t)t2在0,1)上单调递增,即0f(t)f(1).当t1,3时,由f(t)t0,解得t2或t2(舍去),则f(t)在1,2上单调递减,在2,3上单调递增,所以f(t)minf(2)24ln 20.8.又f(3)f(1)4ln 344ln 30,则f(t)maxf(1)0.5.综上所述,当t0,3时,f(t)minf(2)0.8,f(t)maxf(1)0.5.而两人之间的距离L(t)的最大值为|f(t)min|与|f(t)max|中的较大的值,故L(t)max|f(t)min|0.8,即当t2时,两人之间相距最远

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3