1、24.【2012高考真题全国卷理16】三菱柱ABC-A1B1C1中,底面边长和侧棱长都相等, BAA1=CAA1=60则异面直线AB1与BC1所成角的余弦值为_.【答案】【解析】如图设设棱长为1,则,因为底面边长和侧棱长都相等,且所以,所以, ,设异面直线的夹角为,所以.三、解答题25.【2012高考真题广东理18】(本小题满分13分)如图5所示,在四棱锥P-ABCD中,底面ABCD为矩形,PA平面ABCD,点 E在线段PC上,PC平面BDE(1) 证明:BD平面PAC;(2) 若PH=1,AD=2,求二面角B-PC-A的正切值;【答案】本题考查空间直线与平面的位置关系,考查直线与平面垂直的证
2、明、二面角的求解等问题,考查了学生的空间想象能力以及推理论证能力.26.【2012高考真题辽宁理18】(本小题满分12分) 如图,直三棱柱,点M,N分别为和的中点。 ()证明:平面; ()若二面角为直二面角,求的值。【答案】27.【2012高考真题湖北理19】(本小题满分12分)如图1,过动点A作,垂足D在线段BC上且异于点B,连接AB,沿将折起,使(如图2所示) ()当的长为多少时,三棱锥的体积最大;()当三棱锥的体积最大时,设点,分别为棱,的中点,试在棱上确定一点,使得,并求与平面所成角的大小第19题图 ()解法1:以为原点,建立如图a所示的空间直角坐标系由()知,当三棱锥的体积最大时,于
3、是可得,且设,则. 因为等价于,即,故,.所以当(即是的靠近点的一个四等分点)时, 设平面的一个法向量为,由 及,得 可取 设与平面所成角的大小为,则由,可得,即故与平面所成角的大小为 连接,由计算得,所以与是两个共底边的全等的等腰三角形,如图d所示,取的中点,连接,则平面在平面中,过点作于,则平面故是与平面所成的角 在中,易得,所以是正三角形,故,即与平面所成角的大小为 28.【2012高考真题新课标理19】(本小题满分12分)如图,直三棱柱中,是棱的中点,(1)证明:(2)求二面角的大小.29.【2012高考江苏16】(14分)如图,在直三棱柱中,分别是棱上的点(点 不同于点),且为的中点求证:(1)平面平面; (2)直线平面【解析】(1)要证平面平面,只要证平面上的平面即可。它可由已知是直三棱柱和证得。 (2)要证直线平面,只要证平面上的即可。30.【2012高考真题四川理19】(本小题满分12分) 如图,在三棱锥中,平面平面。()求直线与平面所成角的大小;()求二面角的大小。【答案】本题主要考查直线与平面的位置关系,线面角的概念,二面角的概念等基础知识,考查空间想象能力,利用向量解决立体几何问题的能力.