1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版九年级数学上册期中测评试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数
2、为( )A9人B10人C11人D12人2、已知关于x的一元二次方程标有两个不相等的实数根,则实数k的取值范围是()ABC且D3、一元二次方程,用配方法解该方程,配方后的方程为( )ABCD4、在下列图形中,既是轴对称图形,又是中心对称图形的是()A等边三角形B直角三角形C正五边形D矩形5、在平面直角坐标系中,将二次函数的图像向左平移2个单位长度,再向上平移1个单位长度,所得抛物线对应的函数表达式为()ABCD二、多选题(5小题,每小题4分,共计20分)1、下列图形中,是中心对称图形的是()ABCD2、二次函数的部分图象如图所示,图象过点(3,0),对称轴为下列结论正确的是()ABCD若(5,)
3、,(2,)是抛物线上两点,则3、已知抛物线上部分点的横坐标与纵坐标的对应值如表,则下列结论正确的是() 线 封 密 内 号学级年名姓 线 封 密 外 010A对称轴为直线BCD关于的一元二次方程有两个不相等的实数解4、如图是二次函数图象的一部分,过点,对称轴为直线则错误的有()ABCD5、下表中列出的是一个二次函数的自变量与函数的几组对应值:0136下列各选项中,正确的是()A函数图象的开口向下B当时,的值随的增大而增大C函数的图象与轴无交点D这个函数的最小值小于第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、北仑梅山所产的草莓柔嫩多汁,芳香味美,深受消费者喜爱有一草莓
4、种植大户,每天草莓的采摘量为300千克,当草莓的零售价为22元/千克时,刚好可以全部售完经调查发现,零售价每上涨1元,每天的销量就减少30千克,而剩余的草莓可由批发商以18元/千克的价格统一收购走,则当草莓零售价为_元时,该种植户一天的销售收入最大2、抛物线的开口方向向_3、若某二次函数图象的形状与抛物线y3x2相同,且顶点坐标为(0,2),则它的表达式为_4、若一元二次方程(b,c为常数)的两根满足,则符合条件的一个方程为_5、设分别为一元二次方程的两个实数根,则_四、解答题(5小题,每小题8分,共计40分)1、如图所示,抛物线与x轴相交于A、B两点,与y轴相交于点C,点M为抛物线的顶点(1
5、)求点C及顶点M的坐标;(2)在抛物线的对称轴上找一点P,使得PA+PC的值最小,请求出点P的坐标并求出最小值;(3)若点N是第四象限内抛物线上的一个动点,连接BN、CN,求面积的最大值及此时点N的坐标2、如图,平面直角坐标系中,ABC的三个顶点的坐标分别为A(1,2),B(2,4),C( 线 封 密 内 号学级年名姓 线 封 密 外 4,1)(1)在平面直角坐标系中画出与ABC关于点P(1,0)成中心对称的ABC,并分别写出点A,B,C的坐标;(2)如果点M(a,b)是ABC边上(不与A,B,C重合)任意一点,请写出在ABC上与点M对应的点M的坐标3、今年忠县柑橘喜获丰收,某果园销售的柑橘“
6、忠橙”和“爱媛”很受消费者的欢迎,“忠橙”售价80元/箱,“爱媛”售价60元/箱在11月第一周“忠橙”的销量比“爱媛”的销量多100箱,且这两种柑橘的总销售额为50000元(1)在11月第一周,该果园“忠橙”和“爱媛”的销量各为多少箱?(2)为了扩大销售,11月第二周“忠橙”售价降价,销量比第一周培加了,“爱媛”售价不变,销量比第一周增加了,结果这两种相橘第二周的总销售额比第一周的总销售额增加了,求的值4、每年九月开学前后是文具盒的销售旺季,商场专门设置了文具盒专柜李经理记录了天的销售数量和销售单价,其中销售单价(元/个)与时间第天(为整数)的数量关系如图所示,日销量(个)与时间第天(为整数)
7、的函数关系式为: 直接写出与的函数关系式,并注明自变量的取值范围;设日销售额为(元) ,求(元)关于(天)的函数解析式;在这天中,哪一天销售额(元)达到最大,最大销售额是多少元;由于需要进货成本和人员工资等各种开支,如果每天的营业额低于元,文具盒专柜将亏损,直接写出哪几天文具盒专柜处于亏损状态5、如图,抛物线与轴交于两点,与轴交于点,且,.(1)求抛物线的表达式;(2)点是抛物线上一点在抛物线的对称轴上,求作一点,使得的周长最小,并写出点的坐标;连接并延长,过抛物线上一点(点不与点重合)作轴,垂足为,与射线交于点,是否存在这样的点,使得,若存在,求出点的坐标;若不存在,请说明理由 线 封 密
8、内 号学级年名姓 线 封 密 外 -参考答案-一、单选题1、C【解析】【分析】设参加酒会的人数为x人,根据每两人都只碰一次杯,如果一共碰杯55次,列出一元二次方程,解之即可得出答案.【详解】设参加酒会的人数为x人,依题可得:x(x-1)=55,化简得:x2-x-110=0,解得:x1=11,x2=-10(舍去),故答案为C.【考点】考查了一元二次方程的应用,解题的关键是根据题中的等量关系列出方程.2、C【解析】【分析】由一元二次方程定义得出二次项系数k0;由方程有两个不相等的实数根,得出“0”,解这两个不等式即可得到k的取值范围【详解】解:由题可得:,解得:且;故选:C【考点】本题考查了一元二
9、次方程的定义和根的判别式,涉及到了解不等式等内容,解决本题的关键是能读懂题意并牢记一元二次方程的概念和根的判别式的内容,能正确求出不等式(组)的解集等,本题对学生的计算能力有一定的要求3、D【解析】【分析】按照配方法的步骤,移项,配方,配一次项系数一半的平方.【详解】x22xm=0,x22x=m,x22x+1=m+1,(x1)2=m+1故选D【考点】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确使用4、D 线 封 密 内 号学级年名姓 线 封 密 外 【解析】【分析】根据轴对称图形和中心对称图形的概念逐一判断可得【详解】解:A等边三角形是轴对称图形,不是中心对称图形,不符合题意;B
10、直角三角形既不是轴对称图形,也不是中心对称图形,不符合题意;C正五边形是轴对称图形,不是中心对称图形,不符合题意;D矩形既是轴对称图形,又是中心对称图形,符合题意;故选:D【考点】本题主要考查中心对称图形和轴对称图形,解题的关键是掌握把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形5、B【解析】【分析】先求出平移后抛物线的顶点坐标,进而即可得到答案【详解】解:的顶点坐标为(0,0)将二次函数的图像向左平移2个单位长度,再向上平移1个单位长度,所得抛物线的顶点坐标为(
11、-2,1),所得抛物线对应的函数表达式为,故选B【考点】本题主要考查二次函数的平移规律,找出平移后二次函数图像的顶点坐标或掌握“左加右减,上加下减”,是解题的关键二、多选题1、BD【解析】【分析】根据中心对称图形的定义旋转180后能够与原图形完全重合即是中心对称图形,进而判断得出答案【详解】解:A此图形旋转180后不能与原图形重合,此图形不是中心对称图形,故此选项不符合题意;B此图形旋转180后能与原图形重合,此图形是中心对称图形,故此选项符合题意;C此图形旋转180后不能与原图形重合,此图形不是中心对称图形,故此选项不合题意;D此图形旋转180后能与原图形重合,此图形是中心对称图形,故此选项
12、符合题意故选:BD【点睛】本题考查的是中心对称图形的概念,把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形 线 封 密 内 号学级年名姓 线 封 密 外 2、ABD【解析】【分析】利用抛物线开口方向得到a0,利用对称轴方程得到b2a0,利用抛物线与y轴的交点位置得到c0,则可对A进行判断;利用b2a可对B进行判断;利用抛物线的对称性得到抛物线与x轴的另一个交点坐标为(1,0),所以x2时,y0,则可对C进行判断;利用二次函数的性质对D进行判断【详解】解:A抛物线开口向上,a0,抛物线的对称轴为直线x1,b2a0,抛物线与y轴的交点坐标在x轴下方
13、,c0,abc0,故选项正确,符合题意;Bb2a,2ab0,故选项正确,符合题意;C抛物线与x轴的一个交点坐标为(3,0),对称轴为x1,抛物线与x轴的另一个交点坐标为(1,0),当x2时,y0,4a+2b+c0,故选项错误,不符合题意;D点(5,y1)到直线x1的距离比点(2,y2)到直线x1的距离大,y1y2,故选项正确,符合题意故选:ABD【点睛】此题考查了二次函数的图像和性质,熟练掌握二次函数的图像和性质是基础,数形结合是解决问题的关键3、AC【解析】【分析】利用待定系数法求得二次函数解析式,然后利用二次函数的性质逐个进行判断【详解】解:由题意可得,将(-3,0)(-2,1)(-1,0
14、)代入中,解得二次函数解析式为对称轴为直线,故选项A符合题意;,故选项B不符合题意;,故选项C符合题意; 线 封 密 内 号学级年名姓 线 封 密 外 关于的一元二次方程为,即,方程有两个相等的实数根,故选项D不符合题意故选:AC【点睛】本题考查待定系数法求二次函数解析式及二次函数的性质,掌握待定系数法求函数解析式及二次函数的性质正确计算是解题关键4、BD【解析】【分析】由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴x=1可得2a+b的符号;再由根的判别式可得,根据二次函数的对称性进而对所得结论进行判断【详解】解:A、由抛物线的开口向下知a0,对称轴为直线,得
15、2a=b,a、b同号,即b0;故本选项正确,不符合题意;B、对称轴为,得2a=b,2a+b=4a,且a0,2a+b0;故本选项错误,符合题意;C、从图象知,该函数与x轴有两个不同的交点,所以根的判别式,即;故本选项正确,不符合题意;D、3x12,根据二次函数图象的对称性,知当x=1时,y0;又由A知,2a=b,a+b+c0;b+b+c0,即3b+2c0;故本选项错误,符合题意故选:BD【点睛】本题主要考查了二次函数图象与系数之间的关系,熟练运用对称轴的范围求2a与b的关系,二次函数与方程及不等式之间的关系是解决本题的关键5、BD【解析】【分析】根据抛物线经过点(0,-4),(3,-4)可得抛物
16、线对称轴为直线,由抛物线经过点(-2,6)可得抛物线开口向上,进而求解【详解】解:抛物线经过点(0,-4),(3,-4), 线 封 密 内 号学级年名姓 线 封 密 外 抛物线对称轴为直线, 抛物线经过点(-2,6), 当x时,y随x增大而减小, 抛物线开口向上,且跟x轴有交点,故A,C错误,不符合题意; x时,y随x增大而增大,故B正确,符合题意; 由对称性可知,在处取得最小值,且最小值小于-6故D正确,符合题意 故选:BD【点睛】本题考查二次函数的图象与性质,解题关键是掌握二次函数与方程的关系三、填空题1、25【解析】【分析】设草莓的零售价为x元/千克,销售收入为y元,由题意得y=30x2
17、+1500x11880,再根据二次函数的性质解答即可【详解】解:设草莓的零售价为x元/千克,销售收入为y元,由题意得,y=x30030(x22)+1830(x22)=30x2+1500x11880,当时,y最大,当草莓的零售价为25元/千克时,种植户一天的销售收入最大故答案为:25【考点】本题考查二次函数的实际应用,熟练掌握二次函数的性质是解题关键2、下【解析】【分析】根据二次函数二次项系数的大小判断即可;【详解】,抛物线开口向下;故答案是下【考点】本题主要考查了判断抛物线的开口方向,准确分析判断是解题的关键3、y3x22或y3x22【解析】【分析】根据二次函数的图象特点即可分类求解【详解】二
18、次函数的图象与抛物线y3x2的形状相同,说明它们的二次项系数的绝对值相等,故本题有两种可能,即y3x22或y3x22故答案为y3x22或y3x22【考点】此题主要考查二次函数的图象,解题的关键是熟知二次函数形状相同,二次项系数的绝对值相等4、(答案不唯一) 线 封 密 内 号学级年名姓 线 封 密 外 【解析】【分析】设与交点为,根据题意关于y轴对称和二次函数的对称性,可找到的值(只需满足互为相反数且满足即可)即可写出一个符合条件的方程【详解】设与交点为,根据题意则的对称轴为故设则方程为:故答案为:【考点】本题考查了二次函数的对称性,二次函数与一元二次方程的关系,熟悉二次函数的性质和找到两根的
19、对称性类比二次函数的对称性是解题的关键5、2020【解析】【分析】根据一元二次方程的解结合根与系数的关系即可得出m22m2022,mn2,将其代入m23mnm22m(mn)中即可求出结论【详解】解:m,n分别为一元二次方程x22x20220的两个实数根,m22m2022,mn2,m23mnm22m(mn)2022(2)2020故答案为:2020【考点】本题考查了根与系数的关系以及一元二次方程的解,根据一元二次方程的解结合根与系数的关系得出m22m2022,mn2是解题的关键四、解答题1、(1)点的坐标为,点的坐标为;(2)点P的坐标为(1,4),的最小值为;(3)面积的最大值为,此时点的坐标为
20、【解析】【分析】(1)令抛物线解析式中即可求出点坐标,将抛物线的一般式化为顶点式,即可求出顶点坐标;(2)根据轴对称的性质可得线段BC与对称轴的交点即为点P,先利用待定系数法求出解析式,由此再求出点P坐标即可;(3)过点作轴的垂线交直线于Q点,设,进而得到点坐标,最后根据求解即可【详解】解:(1)将代入,得:,点的坐标为, 线 封 密 内 号学级年名姓 线 封 密 外 ,抛物线的顶点的坐标为;(2)如图,设线段BC与对称轴的交点为点P,连接AC,AP,根据轴对称的性质可得:,两点之间线段最短,此时最小,将代入,得: ,解得:,点的坐标为,设直线BC的解析式为,将,代入,得:,解得:,直线BC的
21、解析式为,顶点的坐标为,抛物线的对称轴为直线,将代入,得,点P的坐标为(1,4);故此时的最小值为(3)过点作轴的垂线交直线于点,连接,如图1所示:设点坐标为,则点坐标为,其中, 线 封 密 内 号学级年名姓 线 封 密 外 ,当时,有最大值为,将代入,得:,BCN面积的最大值为,此时点的坐标为【点睛】本题是二次函数综合题目,考查了二次函数的图象和性质、待定系数法求直线的解析式等知识,本题综合性较强,具有一定的难度,熟练掌握二次函数的图形和性质,学会用代数的方法求解几何问题是解决本题的关键2、(1)ABC见解析,A(3,2),B(4,4),C(6,1);(2)M(2a,b)【解析】【分析】(1
22、)分别作出A,B,C的对应点A、B、C,然后顺次连接可得ABC,再根据所作图形写出坐标即可(2)利用中点坐标公式计算即可【详解】解:(1)ABC如图所示,A(3,2),B(4,4),C(6,1);(2)设M(m,n),则有,m2a,nb,M(2a,b)【点睛】本题考查作图中心对称,解题的关键是熟练掌握中心对称的性质,正确找出对应点位置3、 (1)该果11月园第一周销售“忠橙”400箱,销售“爱媛”300箱(2)40【解析】【分析】(1)设该果园11月第一周销售“忠橙”箱,则销售“爱媛”箱,根据等量关系是“忠橙”售价销量箱数+“爱媛”售价销量箱数=50000,列方程,解方程即可;(2)根据等量关
23、系是“忠橙”降价后售价降价后销量箱数+“爱媛”售价增加后销量箱数=总销 线 封 密 内 号学级年名姓 线 封 密 外 售额比第一周的总销售额增加了,列方程,解方程即可(1)解:设该果园11月第一周销售“忠橙”箱,则销售“爱媛”箱,由题意得,解得,经检验是原方程的根,答:该果11月园第一周销售“忠橙”400箱,销售“爱媛”300箱(2)解:由题意得整理,得:,解得:,(不合题意,舍去),答:的值为40【点睛】本题考查列一元一次方程解销售问题应用题,列一元二次方程解应用题,掌握列一元一次方程,一元二次方程解应用题的方法与步骤,抓住等量关系“忠橙”售价销量箱数+“爱媛”售价销量箱数=50000列方程
24、是解题关键4、(1)y,(2)w,在这15天中,第9天销售额达到最大,最大销售额是3600元,(3)第13天、第14天、第15天这3天,专柜处于亏损状态【解析】【分析】(1)用待定系数法可求与的函数关系式;(2)利用总销售额=销售单价销售量,分三种情况,找到(元)关于(天)的函数解析式,然后根据函数的性质即可找到最大值(3)先根据第(2)问的结论判断出在这三段内哪一段内会出现亏损,然后列出不等式求出x的范围,即可找到答案【详解】解:(1)当 时,设直线的表达式为 将 代入到表达式中得 解得 当时,直线的表达式为 y,(2)由已知得:wpy当1x5时,wpy(x15)(20x180)20x212
25、0x270020(x3)22880,当x3时,w取最大值2880,当5x9时,w10(20x180)200x1800,x是整数,2000,当5x9时,w随x的增大而增大,当x9时,w有最大值为200918003600,当9x15时,w10(60x900)600x9000,6000,w随x的增大而减小,又x9时,w600990003600 线 封 密 内 号学级年名姓 线 封 密 外 当9x15时,W的最大值小于3600综合得:w,在这15天中,第9天销售额达到最大,最大销售额是3600元(3)当时,当 时,y有最小值,最小值为 不会有亏损当时,当 时,y有最小值,最小值为 不会有亏损当时, 解
26、得 x为正整数 第13天、第14天、第15天这3天,专柜处于亏损状态【点睛】本题主要考查二次函数和一次函数的实际应用,掌握二次函数和一次函数的性质是解题的关键5、(1);(2)连接交抛物线对称轴于点,则点即为所求,点的坐标为;存在;点的坐标为或【解析】【分析】(1)由,得到A(-2,0),C(3,0),即可写出抛物线的交点式.(2)因为关于对称轴对称,所以,由两点之间线段最短,知连接交抛物线对称轴于点,则点即为所求,先用待定系数法求出解析式,将对称轴代入得到点坐标.设点,根据抛物线的解析式、直线的解析式,写出Q、M的坐标,分当在上方、下方两种情况,列关于m的方程,解出并取大于-2的解,即可写出的坐标.【详解】(1),结合图象,得A(-2,0),C(3,0),抛物线可表示为:,抛物线的表达式为;(2)关于对称轴对称,,连接交抛物线对称轴于点,则点即为所求.将点,的坐标代入一次函数表达式,得直线的函数表达式为.抛物线的对称轴为直线, 线 封 密 内 号学级年名姓 线 封 密 外 当时,,故点的坐标为;存在;设点,则,.当在上方时,解得(舍)或;当在下方时,解得(舍)或,综上所述,的值为或5,点的坐标为或.【点睛】本题考查了二次函数与一次函数综合问题,熟练掌握待定系数法求解析式、最短路径问题是解题的基础,动点问题中分类讨论与数形结合转化为方程问题是解题的关键.