收藏 分享(赏)

2022-2023学年综合复习人教版九年级数学上册期中模拟考试试题 A卷(详解版).docx

上传人:a**** 文档编号:646720 上传时间:2025-12-12 格式:DOCX 页数:24 大小:845.50KB
下载 相关 举报
2022-2023学年综合复习人教版九年级数学上册期中模拟考试试题 A卷(详解版).docx_第1页
第1页 / 共24页
2022-2023学年综合复习人教版九年级数学上册期中模拟考试试题 A卷(详解版).docx_第2页
第2页 / 共24页
2022-2023学年综合复习人教版九年级数学上册期中模拟考试试题 A卷(详解版).docx_第3页
第3页 / 共24页
2022-2023学年综合复习人教版九年级数学上册期中模拟考试试题 A卷(详解版).docx_第4页
第4页 / 共24页
2022-2023学年综合复习人教版九年级数学上册期中模拟考试试题 A卷(详解版).docx_第5页
第5页 / 共24页
2022-2023学年综合复习人教版九年级数学上册期中模拟考试试题 A卷(详解版).docx_第6页
第6页 / 共24页
2022-2023学年综合复习人教版九年级数学上册期中模拟考试试题 A卷(详解版).docx_第7页
第7页 / 共24页
2022-2023学年综合复习人教版九年级数学上册期中模拟考试试题 A卷(详解版).docx_第8页
第8页 / 共24页
2022-2023学年综合复习人教版九年级数学上册期中模拟考试试题 A卷(详解版).docx_第9页
第9页 / 共24页
2022-2023学年综合复习人教版九年级数学上册期中模拟考试试题 A卷(详解版).docx_第10页
第10页 / 共24页
2022-2023学年综合复习人教版九年级数学上册期中模拟考试试题 A卷(详解版).docx_第11页
第11页 / 共24页
2022-2023学年综合复习人教版九年级数学上册期中模拟考试试题 A卷(详解版).docx_第12页
第12页 / 共24页
2022-2023学年综合复习人教版九年级数学上册期中模拟考试试题 A卷(详解版).docx_第13页
第13页 / 共24页
2022-2023学年综合复习人教版九年级数学上册期中模拟考试试题 A卷(详解版).docx_第14页
第14页 / 共24页
2022-2023学年综合复习人教版九年级数学上册期中模拟考试试题 A卷(详解版).docx_第15页
第15页 / 共24页
2022-2023学年综合复习人教版九年级数学上册期中模拟考试试题 A卷(详解版).docx_第16页
第16页 / 共24页
2022-2023学年综合复习人教版九年级数学上册期中模拟考试试题 A卷(详解版).docx_第17页
第17页 / 共24页
2022-2023学年综合复习人教版九年级数学上册期中模拟考试试题 A卷(详解版).docx_第18页
第18页 / 共24页
2022-2023学年综合复习人教版九年级数学上册期中模拟考试试题 A卷(详解版).docx_第19页
第19页 / 共24页
2022-2023学年综合复习人教版九年级数学上册期中模拟考试试题 A卷(详解版).docx_第20页
第20页 / 共24页
2022-2023学年综合复习人教版九年级数学上册期中模拟考试试题 A卷(详解版).docx_第21页
第21页 / 共24页
2022-2023学年综合复习人教版九年级数学上册期中模拟考试试题 A卷(详解版).docx_第22页
第22页 / 共24页
2022-2023学年综合复习人教版九年级数学上册期中模拟考试试题 A卷(详解版).docx_第23页
第23页 / 共24页
2022-2023学年综合复习人教版九年级数学上册期中模拟考试试题 A卷(详解版).docx_第24页
第24页 / 共24页
亲,该文档总共24页,全部预览完了,如果喜欢就下载吧!
资源描述

1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版九年级数学上册期中模拟考试试题 A卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、二次函数的顶点坐标为,图象如图所示,有下列四个结论:;,其中结论正确

2、的个数为()A个B个C个D个2、用配方法解方程时,原方程应变形为()ABCD3、下列一元二次方程中,有两个不相等实数根的是( )ABx2+2x+4=0Cx2-x+2=0Dx2-2x=04、在下列关于x的函数中,一定是二次函数的是( )Ay=x2By=ax2+bx+cCy=8xDy=x2(1+x)5、如图,把长40,宽30的矩形纸板剪掉2个小正方形和2个小矩形(阴影部分即剪掉部分),将剩余的部分折成一个有盖的长方体盒子,设剪掉的小正方形边长为(纸板的厚度忽略不计),若折成长方体盒子的表面积是950,则的值是()A3B4C4.8D5二、多选题(5小题,每小题4分,共计20分)1、两个关于的一元二次

3、方程和,其中,是常数,且如果是方程的一个根,那么下列各数中,一定是方程的根的是()ABC2D-22、下列图案中,是中心对称图形的是()ABCD3、下面一元二次方程的解法中,不正确的是()A(x-3)(x-5)=102,x-3=10,x-5=2,x1=13,x2=7 线 封 密 内 号学级年名姓 线 封 密 外 B(2-5x)+(5x-2)2=0,(5x-2)(5x-3)=0,x1=,x2=C(x+2)2+4x=0,x1=2,x2=-2Dx2=x两边同除以x,得x=14、请观察下列美丽的图案,你认为既是轴对称图形,又是中心对称图形的是()ABCD5、对于二次函数y=2(x1)(x+3),下列说法

4、不正确的是()A图象的开口向上B图象与y轴交点坐标是(0,6)C当x1时,y随x的增大而增大D图象的对称轴是直线x=1第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、若关于x的一元二次方程有两个不相等的实数根,则m的值可以是_(写出一个即可)2、已知抛物线与x轴的一个交点为,则代数式的值为_3、如图,二次函数yax2+bx+c的图象经过点A(3,0),B(1,0),与y轴交于点C下列结论:abc0;3ac0;当x0时,y随x的增大而增大;对于任意实数m,总有abam2bm其中正确的是 _(填写序号)4、如图,点O是正方形ABCD的对称中心,射线OM,ON分别交正方形的边

5、AD,CD于E,F两点,连接EF,已知,(1)以点E,O,F,D为顶点的图形的面积为_;(2)线段EF的最小值是_5、你知道吗,对于一元二次方程,我国古代数学家还研究过其几何解法呢!以方程即为例加以说明数学家赵爽(公元34世纪)在其所著的勾股圆方图注中记载的方法是:构造图(如下面左图)中大正方形的面积是,其中它又等于四个矩形的面积加上中间小正方形的面积,即,据此易得那么在下面右边三个构图(矩形的顶点均落在边长为1的小正方形网格格点上)中,能够说明方程的正确构图是_(只填序号)四、解答题(5小题,每小题8分,共计40分)1、阅读下面内容,并答题:我们知道,计算n边形的对角线条数公式为n(n3)如

6、果一个n边形共有20条对角线,那么可以得到方程n(n3)20解得n8或n5(舍去),这个n边形是八边形根据以上内容,问: 线 封 密 内 号学级年名姓 线 封 密 外 (1)若一个多边形共有9条对角线,求这个多边形的边数;(2)小明说:“我求得一个n边形共有10条对角线”,你认为小明同学的说法正确吗?为什么?2、如图,矩形ABCD中,AB=6cm,BC=12cm. 点M从点A开始沿AB边向点B以1cm/秒的速度向B点移动,点N从点B开始沿BC边以2cm/秒的速度向点C移动. 若M, N分别从A, B点同时出发,设移动时间为t (0t6),DMN的面积为S. (1) 求S关于t的函数关系式,并求

7、出S的最小值;(2) 当DMN为直角三角形时,求DMN的面积.3、如图是两条互相垂直的街道, 且A到B, C的距离都是4千米. 现甲从B地走向A地, 乙从A地走向C地, 若两人同时出发且速度都是4千米/时, 问何时两人之间的距离最近?4、如图,已知正方形点在边上,以为边在左侧作正方形;以为邻边作平行四边形连接 (1)判断和的数量及位置关系,并说明理由;(2)将绕点顺时针旋转,在旋转过程中,和的数量及位置关系是否发生变化?请说明理由5、某宾馆共有80间客房宾馆负责人根据经验作出预测:今年5月份,每天的房间空闲数y(间)与定价x(元/间)之间满足yx42(x168)若宾馆每天的日常运营成本为400

8、0元,有客人入住的房间,宾馆每天每间另外还需支出36元的各种费用,宾馆想要获得最大利润,同时也想让客人得到实惠(1)求入住房间z(间)与定价x(元/间)之间关系式;(2)应将房间定价确定为多少元时,获得利润最大?求出最大利润?-参考答案-一、单选题1、A【解析】【分析】根据二次函数的性质和已知条件,对每一项逐一进行判断即可【详解】解:由图像可知a0,c0,对称轴在正半轴,0,b0,故正确;当x=2时,y0,故,故正确; 线 封 密 内 号学级年名姓 线 封 密 外 函数解析式为:y=a(x-1)2+2=ax2-2ax+a+2假设成立,结合解析式则有a+2,解得a,故,正确;故选:A【考点】本题

9、考查了二次函数图象与系数的关系,结合图象,运用所学知识是解题关键2、D【解析】【分析】移项,配方,变形后即可得出选项【详解】解:x2-4x=1,x2-4x+4=1+4,(x-2)2=5,故选:D【考点】本题考查了解一元二次方程,能够正确配方是解此题的关键3、D【解析】【分析】逐一分析四个选项中方程的根的判别式的符号,由此即可得出结论【详解】A.此方程判别式 ,方程有两个相等的实数根,不符合题意; B.此方程判别式 方程没有实数根,不符合题意;C.此方程判别式 ,方程没有实数根,不符合题意;D .此方程判别式 ,方程有两个不相等的实数根,符合题意;故答案为: D.【考点】此题考查了一元二次方程根

10、的判别式,根的判别式的值大于0,方程有两个不相等的实数根;根的判别式的值等于0,方程有两个相等的实数根;根的判别式的值小于0,方程没有实数根4、A【解析】【分析】根据二次函数的定义:y=ax2+bx+c(a0a是常数),可得答案【详解】解:A、y=x2是二次函数,故A符合题意;B、a=0时不是二次函数,故B不符合题意,C、y=8x是一次函数,故C不符合题意;D、y=x2(1+x)不是二次函数,故D不符合题意;故选A【考点】 线 封 密 内 号学级年名姓 线 封 密 外 本题考查了二次函数的定义,利用二次函数的定义是解题关键,注意a是不等于零的常数5、D【解析】【分析】观察图形可知阴影部分小长方

11、形的长为,再根据去除阴影部分的面积为950,列一元二次方程求解即可【详解】解:由图可得出,整理,得,解得,(不合题意,舍去)故选:D【考点】本题考查的知识点是一元二次方程的应用,根据图形找出阴影部分小长方形的长是解此题的关键二、多选题1、AD【解析】【分析】利用方程根的定义去验证判断即可【详解】,是方程的一个根,是方程的一个根,是方程的一个根,即时方程的一个根.是方程的一个根,当x=时,是方程的根故选:A,D【点睛】本题考查了一元二次方程根的定义即使得方程两边相等的未知数的值,正确理解定义是解题的关键2、ABD【解析】【分析】在平面内,把一个图形绕着某个点旋转180,如果旋转后的图形与另一个图

12、形重合,这个图形就是中心对称图形,根据定义判断即可【详解】 线 封 密 内 号学级年名姓 线 封 密 外 、是中心对称图形,选项正确;B、是中心对称图形,选项正确;C、不是中心对称图形,选项错误;D、是中心对称图形,选项正确故选:ABD【点睛】本题考查中心对称图形的定义,牢记定义是解题关键3、ACD【解析】【分析】各方程求出解,即可作出判断【详解】解:A、方程整理得:x2-8x-5=0,这里a=1,b=-8,c=-5,=64+20=84,故选项A符合题意;B、提取公因式得:(2-5x)(1+2-5x)=0,解得:x1=,x2=,故选项B不符合题意;C、方程整理得:x2+8x+4=0,解得:,故

13、选项C符合题意;D、方程整理得:x2-x=0,即x(x-1)=0,解得:x1=0,x2=1,故选项D符合题意,故选:ACD【点睛】此题考查了解一元二次方程-因式分解法,熟练掌握因式分解的方法是解本题的关键4、AB【解析】【分析】根据轴对称图形(如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合)和中心对称图形(把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合)的定义进行判断【详解】A选项:可以找到多条对称轴,是轴对称图形;绕某一点旋转180,旋转后的图形能够与原来的图形重合,是中心对称图形,所以符合题意;B选项:可以找到多条对称轴,是轴对称图形;绕某一点旋转180,旋转后

14、的图形能够与原来的图形重合,是中心对称图形,所以符合题意;C选项:可以找到多条对称轴,是轴对称图形;绕某一点旋转180,旋转后的图形不能够与原来的图形重合,不是中心对称图形,所以不符合题意;D选项:可以找到多条对称轴,是轴对称图形;绕某一点旋转180,旋转后的图形不能够与原来的图形重合,不是中心对称图形,所以不符合题意故选:AB【点睛】考查中心对称图形和轴对称图形的概念,解题关键是熟记其概念:把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形5、ACD【解析】 线 封

15、 密 内 号学级年名姓 线 封 密 外 【分析】将函数解析式变成顶点式,依照二次函数的性质对比四个选项即可得出结论【详解】解:A、y=-2(x-1)(x+3),a=-20,图象的开口向下,故本选项错误,符合题意;B、y=-2(x-1)(x+3)=-2x2-4x+6,当x=0时,y=6,即图象与y轴的交点坐标是(0,6),故本选项正确,不符合题意;C、y=-2(x-1)(x+3)=-2(x+1)2+8,即当x-1,y随x的增大而减少,故本选项错误,符合题意;D、y=-2(x-1)(x+3)=-2(x+1)2+8,即图象的对称轴是直线x=-1,故本选项错误,符合题意故选:ACD【点睛】本题考查了二

16、次函数的性质,解题的关键是将二次函数关系式变为顶点式,联系二次函数性质对比四个选项即可三、填空题1、0(答案不唯一)【解析】【分析】根据一元二次方程根的判别式求出的取值范围,由此即可得出答案【详解】解:由题意得:此一元二次方程根的判别式,解得,则的值可以是0,故答案为:0(答案不唯一)【考点】本题考查了一元二次方程根的判别式,熟练掌握一元二次方程根的判别式是解题关键2、2019【解析】【分析】先将点(m,0)代入函数解析式,然后求代数式的值即可得出结果【详解】解:将(m,0)代入函数解析式得,m2-m-1=0,m2-m=1,-3m2+3m+2022=-3(m2-m)+2022=-3+2022=

17、2019故答案为:2019【考点】本题考查了二次函数图象上点的坐标特征及求代数式的值,解题的关键是将点(m,0)代入函数解析式得到有关m的代数式的值 线 封 密 内 号学级年名姓 线 封 密 外 3、#【解析】【分析】根据抛物线的对称轴,开口方向,与轴的交点位置,即可判断,根据二次函数yax2+bx+c的图象经过点A(3,0),B(1,0),即可求得对称轴,以及当时,进而可以判断,根据顶点求得函数的最大值,即可判断【详解】解:抛物线开口向下,对称轴,抛物线与轴交于正半轴,故正确,二次函数yax2+bx+c的图象经过点A(3,0),B(1,0),对称轴为,则,当,故不正确,由函数图象以及对称轴为

18、,可知,当时,随的增大而增大,故不正确,对称轴为,则当时,取得最大值,对于任意实数m,总有,即,故正确故答案为:【考点】本题考查了二次函数图象的性质,数形结合是解题的关键4、 1 【解析】【分析】(1)连接AO,DO,证明,可得,求出即可求解;(2)设,则,由勾股定理可得,即可求EF的最小值【详解】解:(1)连接AO,DO,四边形ABCD是正方形,O是中心, 线 封 密 内 号学级年名姓 线 封 密 外 ,故答案为:1;(2)设,则, , 在中,当时,EF有最小值,故答案为:【考点】本题考查正方形的性质,全等三角形的判定与性质,二次函数的性质,熟练掌握二次函数求最值的方法是解题的关键5、【解析

19、】【分析】仿造案例,构造面积是的大正方形,由它的面积为,可求出,此题得解【详解】解:即,构造如图中大正方形的面积是,其中它又等于四个矩形的面积加上中间小正方形的面积,即,据此易得故答案为【考点】本题考查了一元二次方程的应用,仿造案例,构造出合适的大正方形是解题的关键四、解答题1、 (1)6(2)错误,理由见解析【解析】【分析】(1)利用题中给出的对角线条数公式即可求解;(2)利用题中给出的对角线条数公式列出一元二次方程,求解方程的根,根据方程是否有正整数解来判断即可(1)设这个多边形的边数是n,则n(n3)9,解得n6或n3(舍去)这个多边形的边数是6; 线 封 密 内 号学级年名姓 线 封

20、密 外 (2)小明同学的说法是不正确的,理由如下:由题可得n(n3)10,解得n,符合方程的正整数n不存在,n边形不可能有10条对角线,故小明的说法不正确【点睛】本题主要考查了一元二次方程的应用,通过方程是否有正整数解来判断是否存在有10条对角线的多边形是解答本题的关键2、(1)27(2) 【解析】【分析】(1)根据t秒时,M、N两点的运动路程,分别表示出AM、BM、BN、CN的长度,由SDMN=S矩形ABCDSADMSBMNSCDN进行列式即可得到S关于t的函数关系式,通过配方即可求得最小值;(2)当DMN为直角三角形时,由MDN90,分NMD或MND为90两种情况进行求解即可得.【详解】(

21、1) 由题意,得AM=tcm,BN=2tcm,则BM=(6t)cm,CN=(122t)cm,SDMN=S矩形ABCDSADMSBMNSCDN,S=12612t(6t)2t6(122t)=t26t+36=(t3)2+27,t=3在范围0t6内,S的最小值为27cm2;(2) 当DMN为直角三角形时,MDN90,可能NMD或MND为90,当NMD=90时,DN2=DM2+MN2,(122t)2+62=122+t2+(6t)2+(2t)2,解得t=0或18,不在范围0t6内,不可能;当MND=90时,DM2=DN2+MN2,122+t2=(122t)2+62+(6t)2+(2t)2,解得t=或6,(

22、6不在范围0t6内舍),S=(3)2+27=cm2.【点睛】本题考查了二次函数的应用,涉及矩形的性质、三角形面积、二次函数的性质、勾股定理的应用等知识,熟练掌握和灵活应用相关知识是解题的关键.3、当t=(在0t1的范围内)时, S的最小值为千米【解析】【分析】设两人均出发了t时,根据勾股定理建立甲、乙之间的距离与时间t的函数关系式,然后求出二次函数在一定的取值范围内的最值即可得解.【详解】设两人均出发了t时, 则此时甲到A地的距离是(44t)千米, 乙离A地的距离是4t千米, 由勾股定理, 得甲, 乙两人间的距离为:S=,当t=(在0t1的范围内)时, S的最小值为千米.【点睛】 线 封 密

23、内 号学级年名姓 线 封 密 外 本题考查二次函数的实际应用,关键在于根据题意写出二次函数关系式,再利用求二次函数的最值方法求最值.4、(1);理由见解析;(2)与的数量及位置关系都不变;答案见解析【解析】【分析】(1)证明,由全等三角形的性质得出,得出,则可得出结论;(2)证明,由全等三角形的性质得出,由平行线的性质证出,则可得出结论【详解】解:(1),由题意可得,平行四边形为矩形,设与交于点,则,即(2)与的数量及位置关系都不变如图,延长到点,四边形为平行四边形,又, 线 封 密 内 号学级年名姓 线 封 密 外 ,即【点睛】本题考查了旋转的性质,全等三角形的判定和性质,正方形的性质,解题

24、的关键是:熟练掌握正方形的性质5、(1)zx+122(x168);(2)应将房间定价确定为260元时,获得利润最大,最大利润为8767元【解析】【分析】(1)入住房间z(间)等于80减去每天的房间空闲数,列式并化简即可;(2)设利润为w元,由题意得w关于x的二次函数关系式,根据二次函数的对称性及问题实际可得答案【详解】解:(1)由题意得:z80(x42)x+122,入住房间z(间)与定价x(元/间)之间关系式为zx+122(x168);(2)设利润为w元,由题意得:w(x+122)x36(x+122)4000x2+131x8392,当x262时,w最大,此时z56.5非整数,不合题意,x260或264时,w最大,让客人得到实惠,x260,w最大2602+13126083928767,应将房间定价确定为260元时,获得利润最大,最大利润为8767元【点睛】本题考查了二次函数在实际问题中的应用,理清题中的数量关系、熟练掌握二次函数的性质是解题的关键

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 语文

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1