1、北师大版八年级数学上册第一章勾股定理专项测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、我国古代数学名著算法统宗有一道“荡秋千”的问题:“平地秋千未起,踏板一尺离地送行二步与人齐,5尺人高曾记,仕女家
2、人争蹴良工高士素好奇,算出索长有几?”此问题可理解为:“如图,有一架秋千,当它静止时,踏板离地距离的长为尺,将它向前水平推送尺时,即尺,秋千踏板离地的距离和身高尺的人一样高,秋千的绳索始终拉得很直,试问绳索有多长?”,设秋千的绳索长为尺,根据题意可列方程为()ABCD2、在直角三角形中,若勾为3,股为4,则弦为()A5B6C7D83、如图,由6个相同小正方形组成的网格中,A,B,C均在格点上,则ABC 的度数为()A45B50C55D604、如图,在RtABC中,ACB=90,CDAB,垂足为D,AF平分CAB,交CD于点E,交CB于点F,若AC=3,AB=5,则CE的长为()ABCD5、已知
3、直角三角形纸片的两条直角边长分别为m和n(mn),过锐角顶点把该纸片剪成两个三角形,若这两个三角形都为等腰三角形,则( )Am2+2mn+n2=0Bm22mn+n2=0Cm2+2mnn2=0Dm22mnn2=06、如图,长方形中,将此长方形折叠,使点与点重合,折痕为,则的长为()A12B8C10D137、如图,在ABC中,AB2,ABC60,ACB45,D是BC的中点,直线l经过点D,AEl,BFl,垂足分别为E,F,则AE+BF的最大值为()AB2C2D38、如图,有一只小鸟从小树顶飞到大树顶上,它飞行的最短路程是()A13米B12米C5米D米9、如图,桌上有一个圆柱形玻璃杯(无盖)高6厘米
4、,底面周长16厘米,在杯口内壁离杯口1.5厘米的A处有一滴蜜糖,在玻璃杯的外壁,A的相对方向有一小虫P,小虫离杯底的垂直距离为1.5厘米,小虫爬到蜜糖处的最短距离是() A厘米B10厘米C厘米D8厘米10、 “赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形设直角三角形较长直角边长为a,较短直角边长为b若ab=8,大正方形的面积为25,则小正方形的边长为A9B6C4D3第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、我国古代的数学名著九章算术中有这样一道题目“今有立木,系索其末
5、,委地三尺引索却行,去本八尺而索尽问索长几何?”译文为“今有一竖立着的木柱,在木柱的上端系有绳索,绳索从木柱上端顺木柱下垂后,堆在地面的部分尚有3尺,牵索沿地面退行,在离木柱根部8尺处时,绳索用尽问绳索长是多少?”示意图如下图所示,设绳索的长为尺,根据题意,可列方程为_2、如图,在中,分别以,边为直径作半圆,图中阴影部分在数学史上称为“希波克拉底月牙”,当,时,阴影部分的面积为_3、已知a、b、c是一个三角形的三边长,如果满足,则这个三角形的形状是_4、如图,在的网格中每个小正方形的边长都为1,的顶点、都在格点上,点为边的中点,则线段的长为_5、如图,铁路MN和公路PQ在O点处交汇,公路PQ上
6、A处点距离O点240米,距离MN 120米,如果火车行驶时,周围两百米以内会受到噪音的影响,那么火车在铁路MN上沿ON方向,以144千米/时的速度行驶时,A处受噪音影响的时间是_s三、解答题(5小题,每小题10分,共计50分)1、已知m0,若3m+2,4m+8,5m+8是一组勾股数,求m的值2、如图,已知等腰ABC的底边BC=10cm,D是腰AC上一点,且CD=6cm,BD=8cm(1)判断BCD的形状,并说明理由;(2)求ABC的周长3、如图,一艘船由A港沿北偏东60方向航行10km至B港,然后再沿北偏西30方向航行10km至C港(1)求A,C两港之间的距离(结果保留到0.1km,参考数据:
7、1.414,1.732);(2)确定C港在A港的什么方向4、在边长为8的等边ABC中,点D是边AB上的一动点,点E在边AC上,且CE = 2AD,射线DE绕点D顺时针旋转60交BC边于F(1)如图1,求证:AED = BDF;(2)如图2,在射线DF上取DP=DE,连接BP,求DBP的度数;取边BC的中点M,当PM取最小值时,求AD的长.5、如图,有一架秋千,当他静止时,踏板离地的垂直高度,将他往前推送(水平距离)时,秋千的踏板离地的垂直高度,秋千的绳索始终拉得很直,求绳索的长度-参考答案-一、单选题1、C【解析】【分析】根据勾股定理列方程即可得出结论【详解】解:由题意知:OC=x-(5-1)
8、,PC=10,OP=x,在RtOCP中,由勾股定理得:x-(5-1)2+102=x2即故选:C【考点】本题主要考查了勾股定理的应用,读懂题意是解题的关键2、A【解析】【分析】直接根据勾股定理求解即可【详解】解:在直角三角形中,勾为3,股为4,弦为,故选A【考点】本题考查了勾股定理,熟练掌握勾股定理是解题的关键3、A【解析】【分析】连接AC,利用勾股定理分别求出AB、AC、BC,根据勾股定理的逆定理得到ABC是等腰直角三角形,ACB=90,再根据三角形内角和定理得到答案【详解】连接AC,AC=BC,ABC是等腰直角三角形,ACB=90,ABC= (180-ACB)=45故选A【考点】本题考查了等
9、腰三角形,勾股定理的逆定理,解决问题的关键是作辅助线构建三角形,熟练掌握等腰三角形的定义和性质,熟练运用勾股定理的逆定理判断直角三角形4、A【解析】【分析】根据三角形的内角和定理得出CAF+CFA=90,FAD+AED=90,根据角平分线和对顶角相等得出CEF=CFE,即可得出EC=FC,再利用相似三角形的判定与性质得出答案【详解】过点F作FGAB于点G,ACB=90,CDAB,CDA=90,CAF+CFA=90,FAD+AED=90,AF平分CAB,CAF=FAD,CFA=AED=CEF,CE=CF,AF平分CAB,ACF=AGF=90,FC=FG,B=B,FGB=ACB=90,BFGBAC
10、,AC=3,AB=5,ACB=90,BC=4,FC=FG,解得:FC=,即CE的长为故选A【考点】本题考查了直角三角形性质、等腰三角形的性质和判定,三角形的内角和定理以及相似三角形的判定与性质等知识,关键是推出CEF=CFE5、C【解析】【分析】如图,根据等腰三角形的性质和勾股定理可得m2+m2=(n-m)2,整理即可求解【详解】m2+m2=(nm)2, 2m2=n22mn+m2, m2+2mnn2=0故选C.6、D【解析】【分析】设BE为x,则AE为25-x,在由勾股定理有,即可求得BE=13【详解】设BE为x,则DE为x,AE为25-x四边形为长方形EAB=90在中由勾股定理有即化简得解得
11、故选:D【考点】本题考查了折叠问题求折痕或其他边长,主要可根据折叠前后两图形的全等条件,把某个直角三角形的三边都用同一未知量表示出来,并根据勾股定理建立方程,进而可以求解7、A【解析】【分析】把要求的最大值的两条线段经过平移后形成一条线段,然后再根据垂线段最短来进行计算即可【详解】解:如图,过点C作CKl于点K,过点A作AHBC于点H,在RtAHB中,ABC60,AB2,BH1,AH,在RtAHC中,ACB45,AC,点D为BC中点,BDCD,在BFD与CKD中,BFDCKD(AAS),BFCK,延长AE,过点C作CNAE于点N,可得AE+BFAE+CKAE+ENAN,在RtACN中,ANAC
12、,当直线lAC时,最大值为,综上所述,AE+BF的最大值为故选:A【考点】本题主要考查了全等三角形的判定定理和性质定理及平移的性质,构建全等三角形是解答此题的关键8、A【解析】【分析】根据题意,画出图形,构造直角三角形,用勾股定理求解即可.【详解】如图所示,过D点作DEAB,垂足为E,AB=13,CD=8,又BE=CD,DE=BC,AE=ABBE=ABCD=138=5,在RtADE中,DE=BC=12, AD=13(负值舍去),故小鸟飞行的最短路程为13m,故选A.【考点】考查勾股定理,画出示意图,数形结合是解题的关键.9、B【解析】【分析】把圆柱沿着点A所在母线展开,把圆柱上最短距离转化为将
13、军饮马河型最短问题求解即可.【详解】把圆柱沿着点A所在母线展开,如图所示,作点A的对称点B,连接PB,则PB为所求,根据题意,得PC=8,BC=6,根据勾股定理,得PB=10,故选B.【考点】本题考查了圆柱上的最短问题,利用圆柱展开,把问题转化为将军饮马河问题,灵活使用勾股定理是解题的关键.10、D【解析】【分析】由题意可知:中间小正方形的边长为:,根据勾股定理以及题目给出的已知数据即可求出小正方形的边长【详解】解:由题意可知:中间小正方形的边长为:,每一个直角三角形的面积为:,或(舍去),故选:D【考点】本题考查勾股定理,解题的关键是熟练运用勾股定理以及完全平方公式,本题属于基础题型二、填空
14、题1、x2(x3)282【解析】【分析】设绳索长为x尺,根据勾股定理列出方程解答即可【详解】解:设绳索长为x尺,根据题意得:x2(x3)282,故答案为:x2(x3)282【考点】本题考查了勾股定理的应用,找准等量关系,正确列出相应方程是解题的关键2、24【解析】【分析】根据勾股定理得到AC2=AB2-BC2,先求解AC,再根据阴影部分的面积等于直角三角形的面积加上以AC,BC为直径的半圆面积,再减去以AB为直径的半圆面积即可【详解】解:由勾股定理得,AC2=AB2-BC2=64, 则阴影部分的面积 , 故答案为24【考点】本题考查的是勾股定理、半圆面积计算,掌握勾股定理和半圆面积公式是解题的
15、关键3、直角三角形【解析】【分析】根据绝对值、完全平方数和算数平方根的非负性,可求解出a、b、c的值,再根据勾股定理的逆定理判断即可【详解】解:由题意得: ,解得:,三角形为直角三角形故答案为直角三角形【考点】本题主要考查了非负数的性质和勾股定理的逆定理,运用非负数的性质求出a、b、c的值是解题的关键4、2.5【解析】【分析】由勾股定理得AC2=20,BC2=5,AB2=25,则AC2+BC2=AB2,再由勾股定理的逆定理证明ABC是直角三角形,然后由直角三角形斜边上的中线性质即可得出答案【详解】解:由勾股定理得:AC2=22+42=20,BC2=12+22=5,AB2=42+32=25,AC
16、2+BC2=AB2,ABC是直角三角形,ACB=90,AB=5,点O为AB边的中点,CO=AB=2.5,故答案为:2.5【考点】本题考查了勾股定理、勾股定理的逆定理以及直角三角形斜边上的中线性质等知识,熟练掌握勾股定理和勾股定理的逆定理是解题的关键5、8【解析】【分析】过点A作ACON,根据题意可知AC的长与200米相比较,发现受到影响,然后过点A作AD=AB=200米,求出BD的长即可得出居民楼受噪音影响的时间【详解】解:如图:过点A作ACON,AB=AD=200米,公路PQ上A处点距离O点240米,距离MN 120米,AC=120米,当火车到B点时对A处产生噪音影响,此时AB=200米,A
17、B=200米,AC=120米,由勾股定理得:BC=160米,CD=160米,即BD=320米,144千米/小时=40米/秒,影响时间应是:32040=8秒故答案为:8【考点】本题考查勾股定理的应用根据题意构建直角三角形是解题关键三、解答题1、m1【解析】【分析】根据勾股数定义:满足a2+b2=c2的三个正整数,称为勾股数可得:(3m+2)2+ ( 4m+8) 2= ( 5m+8) 2,再解方程即可【详解】解: m0, 3m+2,4m+8,5m+8是一组勾股数,(3m+2)2+(4m+8)2(5m+8)2,解得:m1【考点】此题主要考查了勾股数,关键是掌握勾股数定义2、 (1)BDC为直角三角形
18、,理由见解析;(2)ABC的周长为=cm【解析】【分析】(1)由BC=10cm,CD=8cm,BD=6cm,知道BC2=BD2+CD2,所以BDC为直角三角形;(2)由此可求出AC的长,周长即可求出(1)解:BDC为直角三角形,理由如下,BC=10cm,CD=8cm,BD=6cm,而102=62+82,BC2=BD2+CD2BDC为直角三角形;(2)解:设AB=xcm,等腰ABC,AB=AC=x,则AD=x-6,AB2=AD2+BD2,即x2=(x-6)2+82,x=,ABC的周长=2AB+BC=(cm)【考点】本题考查了勾股定理的逆定理,关键是根据等腰三角形的性质、勾股定理以及逆定理的应用解
19、答3、(1)A、C两地之间的距离为14.1km;(2)C港在A港北偏东15的方向上【解析】【分析】(1)根据方位角的定义可得出ABC=90,再根据勾股定理可求得AC的长为14.1.(2)由(1)可知ABC为等腰直角三角形,从而得出BAC=45,求出CAM=15,所而确定C港在A港的什么方向.【详解】(1)由题意可得,PBC=30,MAB=60,CBQ=60,BAN=30,ABQ=30,ABC=90AB=BC=10,AC=14.1答:A、C两地之间的距离为14.1km(2)由(1)知,ABC为等腰直角三角形,BAC=45,CAM=15,C港在A港北偏东15的方向上【考点】本题考查了方位角的概念及
20、勾股定理及其逆定理,正确理解方位角是解题的关键.4、(1)见解析;(2)30;2【解析】【分析】(1)根据等边三角形的性质求解即可;(2)方法一:连接EP,过点P作GQBC分别交AB,AC于点G,Q,易知 AGQ和DEP均为等边三角形,得到ADEGPDQEP(AAS),即可得解;方法二:在DB上取DG=AE,证明ADEGPD(SAS),即可得解;在DB上取DG=AE,当时,PM取得最小值,得到PM = 2,PB = 2,过点G作GHBP于点H,利用直角三角形的性质求解即可;【详解】解:(1)在等边ABC中,AB=AC,A= ABC=C = 60, EDF = 60,ADE+BDF= ADE+A
21、ED= 120,AED = BDF;(2)方法一:如答题图1,连接EP,过点P作GQBC分别交AB,AC于点G,Q,易知 AGQ和DEP均为等边三角形,BG=CQ,AGQ60,ADE+BDFADE+AED120,AED = BDF,同理BDFEPQ,可证:ADEGPDQEP(AAS),AD=GP=QE,CE = 2AD=CQ+EQ=AD+BG,PG=BG,DBPBPG30;方法二:如答题图2,在DB上取DG=AE,AED = BDF又DP = DE,ADEGPD(SAS),PG = AD,PGD60,CE =AC-AE =AB-DG =AD+BG=2AD,BG =AD =PG,DBPBPG30
22、;如答图3,在DB上取DG=AE,由可知MBP30, AD =BG =PG;当时,PM取得最小值;在RtBMP中,MBP30,BM =4,PM = 2,PB = 2;过点G作GHBP于点H,BG =PG, BH =;在RtBGH中,GBP30,BH =BG =2,AD = BG = 2. 【考点】本题主要考查了全等三角形的判定与性质、等边三角形的综合应用,准确计算是解题的关键5、【解析】【分析】设秋千的绳索长为,则,利用勾股定理得,再解方程即可得出答案【详解】解:设秋千的绳索长为,则,在中,即,解得,答:绳索的长度是【考点】此题主要考查了勾股定理的应用,关键是正确理解题意,表示出AC、AB的长,掌握直角三角形中两直角边的平方和等于斜边的平方
Copyright@ 2020-2024 m.ketangku.com网站版权所有