1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版数学八年级上册期末模拟考试 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、 “三等分角”大约是在公元前五世纪由古希腊人提出来的.借助如图所示的“
2、三等分角仪”能三等分任一角.这个三等分角仪由两根有槽的棒,组成,两根棒在点相连并可绕转动,点固定,点,可在槽中滑动,若,则的度数是()A60B65C75D802、如图,在小正三角形组成的网格中,已有个小正三角形涂黑,还需涂黑个小正三角形,使它们与原来涂黑的小正三角形组成的新图案恰有三条对称轴,则的最小值为()ABCD3、如图,1、2、3中是ABC外角的是()A1、2B2、3C1、3D1、2、34、若代数式有意义,则实数的取值范围是()ABCD5、化简的结果是()ABCD二、多选题(5小题,每小题4分,共计20分)1、如图,是的角平分线,分别是和的高,连接交于点G下列结论正确的为()A垂直平分B
3、平分C平分D当为时,是等边三角形2、下列各式中,计算错误的是()ABCD3、下列平面图形中,是轴对称图形的是() 线 封 密 内 号学级年名姓 线 封 密 外 ABCD4、如图,EADF,AE=DF,要使AECDFB,可以添加的条件有()AAB=CDBAC=BDCA=DDE=F5、如图是一个风筝的图案,它是以直线AF为对称轴的轴对称图形,下列结论中一定成立的是()AABDACDBAF垂直平分EGCB=CDDEEG第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、在平面直角坐标系中,点与点关于轴对称,则的值是_2、小明将一张正方形纸片按如图所示顺序折叠成纸飞机,当机翼展开在
4、同一平面时(机翼间无缝隙),的度数是_.3、若分式的值为负数,则x的取值范围是_4、如图,ABCDBE,ABC的周长为30,AB9,BE8,则AC的长是_5、如图,如图,A+B+C+D+E+F+G=_四、解答题(5小题,每小题8分,共计40分)1、如图,在中,是边上的一点,平分,交边于点,连接(1)求证:; 线 封 密 内 号学级年名姓 线 封 密 外 (2)若,求的度数2、如图,在中,D是边上的点,垂足分别为E,F,且求证:3、图、图均是66的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点称为格点,ABC的顶点均在格点上,只用无刻度的直尺,在给定的网格中,分别按下列要求画图(1)在
5、图中的线段AB上找一点D,连结CD,使BCD BDC(2)在图中的线段AC上找一点E,连结BE,使EAB EBA4、先化简,再求值:,其中5、计算:(1)当x为何值时,分式的值为0(2)当x=4时,求的值-参考答案-一、单选题1、D【解析】【分析】根据OC=CD=DE,可得O=ODC,DCE=DEC,根据三角形的外角性质可知DCE=O+ODC=2ODC据三角形的外角性质即可求出ODC数,进而求出CDE的度数【详解】,设,即,解得:,.故答案为D.【考点】本题考查等腰三角形的性质以及三角形的外角性质,理清各个角之间的关系是解答本题的关键2、C 线 封 密 内 号学级年名姓 线 封 密 外 【解析
6、】【分析】由等边三角形有三条对称轴可得答案【详解】如图所示,n的最小值为3故选C【考点】本题考查了利用轴对称设计图案,解题的关键是掌握常见图形的性质和轴对称图形的性质3、C【解析】【分析】根据三角形外角的定义进行分析即可得到答案.【详解】解:属于ABC外角的有1、3共2个故选C【考点】本题考查三角形外角的定义,解题的关键是掌握三角形的定义.4、D【解析】【分析】分式有意义的条件是分母不为【详解】代数式有意义,故选D【考点】本题运用了分式有意义的条件知识点,关键要知道分母不为是分式有意义的条件5、D【解析】【分析】最简公分母为,通分后求和即可【详解】解:的最简公分母为,通分得故选D【考点】本题考
7、查了分式加法运算解题的关键与难点是找出通分时分式的最简公分母二、多选题1、ACD【解析】 线 封 密 内 号学级年名姓 线 封 密 外 【分析】根据角平分线性质求出DEDF,证RtAEDRtAFD,推出AEAF,再逐个判断即可【详解】解:AD是ABC的角平分线,DE,DF分别是ABD和ACD的高,DEDF,AEDAFD90,在RtAED和RtAFD中,RtAEDRtAFD(HL),AEAF,ADEADF,AD平分EDF;C正确;AD平分BAC,AEAF,DEDF,AD垂直平分EF,A正确;B错误,BAC60,AEAF,AEF是等边三角形,D正确故选:ACD【考点】本题考查了全等三角形的性质和判
8、定,正方形的判定,角平分线性质的应用,能求出RtAEDRtAFD是解此题的关键2、ACD【解析】【分析】根据合并同类项,积的乘方,同底数幂的乘除法,逐项分析即可【详解】A. 与不是同类项,不能合并,故该选项不正确,符合题意;B. ,故该选项正确,不符合题意;C. ,故该选项不正确,符合题意;D. ,故该选项不正确,符合题意故选ACD【考点】本题考查了合并同类项,积的乘方,同底数幂的乘除法,掌握以上知识是解题的关键3、ACD【解析】【分析】根据轴对称图形的定义:一个图形延一条直线对着,直线两旁的部分能够完全重合,那么这个图形叫轴对称图形,逐个判断即可【详解】解:A是轴对称图形,故本选项符合题意;
9、B不是轴对称图形,故本选项不符合题意;C是轴对称图形,故本选项符合题意;D是轴对称图形,故本选项符合题意;故选:ACD【考点】本题考查了轴对称图形的定义,熟悉相关定义是解题的关键 线 封 密 内 号学级年名姓 线 封 密 外 4、ABD【解析】【分析】由AEDF可得A=D,要判定AECDFB,已知一边一角,根据三角形全等的判定方法,如果要加边相等,只能是AC=DB(或AB=CD);如果要加角相等,可以是E=F或者是ACE=DBF,结合四个选项即可求解【详解】解:AEDF,A=D,A、AB=CD,AB+BC=CD+BC,即AC=DB,又AE=DF,A=D,根据SAS能推出AECDFB,故本选项符
10、合题意;B、AC=BD,AE=DF,A=D,根据SAS能推出AECDFB,故本选项符合题意;C、A=D,AE=DF,不能推出AECDFB,故本选项不符合题意;D、E=F,AE=DF,A=D,根据ASA能推出AECDFB,故本选项符合题意;故选:ABD【考点】本题考查了全等三角形的判定定理和平行线的性质,能熟记全等三角形的判定定理的内容是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS5、ABC【解析】【分析】认真观察图形,根据轴对称图形的性质得选项A、B、C都是正确的,没有理由能够证明DEG是等边三角形【详解】解:A、因为此图形是轴对称图形,则ABDACD正确;B、对称
11、轴垂直平分对应点连线,正确;C、由三角形全等可知,BC,正确;D、题目中没有60条件,不能判断是等边三角形,故不能得到DEEG错误故选:ABC【考点】本题考查了轴对称的性质;解决此题要注意,不要受图形误导,要找准各选项正误的具体原因是正确解答本题的关键三、填空题1、4【解析】【分析】根据关于x轴对称的两点的横坐标相同,纵坐标互为相反数求得a、b的值即可求得答案.【详解】点与点关于轴对称,则a+b的值是:, 线 封 密 内 号学级年名姓 线 封 密 外 故答案为【考点】本题考查了关于x轴对称的点的坐标特征,熟练掌握关于坐标轴对称的点的坐标特征是解此类问题的关键.2、45【解析】【分析】根据折叠过
12、程可知,在折叠过程中角一直是轴对称的折叠.【详解】在折叠过程中角一直是轴对称的折叠,故答案为45【考点】考核知识点:轴对称.理解折叠的本质是关键.3、【解析】【分析】根据分式值为负的条件列出不等式求解即可【详解】解:0x-20,即故填:【考点】本题主要考查了分式值为负的条件,根据分式小于零的条件列出不等式成为解答本题的关键4、13【解析】【分析】根据全等三角形的性质求出BC,根据三角形的周长公式计算,得到答案【详解】解:ABCDBE,BE8,BCBE8,ABC的周长为30,AB+AC+BC30,AC30ABBC13,故答案为:13【考点】此题主要考查全等三角形的性质,解题的关键是熟知全等三角形
13、的性质5、【解析】【分析】连接BC、AD根据四边形的内角和定理以及三角形的内角和是180进行分析求解【详解】解:如图,连接BC、AD 线 封 密 内 号学级年名姓 线 封 密 外 在四边形BCEG中,得E+G+ECB+GBC=360,又因为1+2=3+4,5+6+F=180,4+5+3+6=CAF+BDF,即1+2+5+6=CAF+BDF,所以CAF+B+C+BDF+E+F+G=540,即A+B+C+D+E+F+G=540故答案为:540【考点】本题考查了四边形内角和定理以及三角形内角和定理,解题的关键是能够巧妙构造四边形,根据四边形的内角和定理以及三角形的内角和定理进行求解四、解答题1、 (
14、1)见解析;(2)【解析】【分析】(1)由角平分线定义得出,由证明即可;(2)由三角形内角和定理得出,由角平分线定义得出,在中,由三角形内角和定理即可得出答案【详解】(1)证明:平分,在和中,;(2),平分,在中,【考点】本题考查了全等三角形的判定与性质、角平分线的定义、三角形内角和定理;熟练掌握三角形内角和定理和角平分线定义,证明三角形全等是解题的关键2、见解析【解析】【分析】由得出,由SAS证明,得出对应角相等即可【详解】证明:, 线 封 密 内 号学级年名姓 线 封 密 外 在和中,【考点】本小题考查垂线的性质、全等三角形的判定与性质、等基础知识,考查推理能力、空间观念与几何直观3、(1
15、)见解析;(2)见解析【解析】【分析】(1)根据等边对等角,在AB上取一点D使BD=BC=3,连接CD即可;(2)线段AB的垂直平分线与AC的交点E即为所求【详解】(1)如图所示,即为所求,(2)如图所示,即为所求,【考点】本题考查了作图-应用与设计作图,等腰三角形的性质,线段的垂直平分线的性质等知识,熟练运用等腰三角形的性质,线段垂直平分线的性质是解题的关键4、,4【解析】【分析】把分子、分母进行因式分解,先根据分式乘法法则计算,再根据分式加减法法则化简得出最简结果,最后代入求值即可【详解】= 线 封 密 内 号学级年名姓 线 封 密 外 当时,原式【考点】本题考查分式的运算化简求值,熟练掌握分式的混合运算法则是解题关键5、(1);(2)【解析】【分析】(1)根据分母为0是分式无意义,分式值为零的条件是分子等于零且分母不等于零列式计算即可;(2)把直接代入分式,计算即可【详解】解:(1)根据题意,分式的值为0,当x+1=0,即时,分式值为0;(2)当x=4时, = = ;【考点】本题考查了分式的值为0的条件,以及求分式的值,解题的关键是掌握分式值为零的条件是分子等于零且分母不等于零