1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版数学八年级上册期中考试题 A卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、长度分别为2,3,3,4的四根细木棒首尾相连,围成一个三角形(木棒允许连接
2、,但不允许折断),得到的三角形的最长边长为()A4B5C6D72、当n边形边数增加2条时,其内角和增加()ABCD3、平面内,将长分别为1,5,1,1,d的线段,顺次首尾相接组成凸五边形(如图),则d可能是()A1B2C7D84、如图,RtACB中,ACB=90,ACB的角平分线AD,BE相交于点P,过P作PFAD交BC的延长线于点F,交AC于点H,则下列结论:APB=135; AD=PF+PH;DH平分CDE;S四边形ABDE=SABP;SAPH=SADE,其中正确的结论有()个A2B3C4D55、若长度分别是a、3、5的三条线段能组成一个三角形,则a的值可以是()A1B2C4D8二、多选题
3、(5小题,每小题4分,共计20分)1、如图,在中,是角平分线,是中线,则下列结论,其中不正确的结论是()ABCD2、如图,要添加一个条件使添加的条件可以是()ABCD 线 封 密 内 号学级年名姓 线 封 密 外 3、以下列数字为长度的各组线段中,能构成三角形的有()A1,2,3B2,3,4C3,4,5D4,5,64、在ABC和ABC中,已知A=A,AB=AB,下面判断中正确的是()A若添加条件AC=AC,则ABCABCB若添加条件BC=BC,则ABCABCC若添加条件B=B,则ABCABCD若添加条件 C=C,则ABCABC5、如图, AD是的中线,E,F分别是AD和AD延长线上的点,且,连
4、结BF,CE下列说法中正确的有()ACEBF;BABD和ACD面积相等;CBFCE;DBDFCDE第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、如图,在四边形中,于,则的长为_2、正多边形的每个内角等于,则这个正多边形的边数为_条3、将两张三角形纸片如图摆放,量得1+2+3+4=220,则5=_4、如图,是一个中心对称图形,A为对称中心,若,则_,_5、如图,中,点,分别在,上,与交于点,若,则的面积_四、解答题(5小题,每小题8分,共计40分)1、如图,在ABC中,BAC90,ABAC,直线m经过点A,BD直线m,CE直线m,垂足分别为D,E 线 封 密 内 号学级
5、年名姓 线 封 密 外 (1)求证:ABDACE;(2)若BD2cm,CE4cm,求DE的长2、如图,已知:正方形,点,分别是,上的点,连接,且,求证:3、在中,为直线上一点,连接,过点作交于点,交于点,在直线上截取,连接(1)当点,都在线段上时,如图,求证:;(2)当点在线段的延长线上,点在线段的延长线上时,如图;当点在线段的延长线上,点在线段的延长线上时,如图,直接写出线段,之间的数量关系,不需要证明4、如图,在ABC中,ACB90,用直尺和圆规在斜边AB上作一点P,使得点P到点B的距离与点P到边AC的距离相等(保留作图痕迹,不写作法)5、如图,点C、F在线段BE上,ABCDEF90,BC
6、EF,请只添加一个合适的条件使ABCDEF(1)根据“ASA”,需添加的条件是;根据“HL”,需添加的条件是;(2)请从(1)中选择一种,加以证明-参考答案-一、单选题1、B【解析】【分析】利用三角形的三边关系列举出所围成三角形的不同情况,通过比较得到结论.【详解】长度分别为5、3、4,能构成三角形,且最长边为5; 线 封 密 内 号学级年名姓 线 封 密 外 长度分别为2、6、4,不能构成三角形;长度分别为2、7、3,不能构成三角形;长度分别为6、3、3,不能构成三角形;综上所述,得到三角形的最长边长为5故选:B.【考点】此题考查构成三角形的条件,三角形的三边关系,解题中运用不同情形进行讨论
7、的方法,注意避免遗漏构成的情况.2、B【解析】【分析】根据n边形的内角和定理即可求解【详解】解:原来的多边形的边数是n,则新的多边形的边数是n2(n22)180(n2)180360故选:B【考点】本题主要考查了多边形的内角和定理,多边形的边数每增加一条,内角和就增加180度3、C【解析】【分析】如图(见解析),设这个凸五边形为,连接,并设,先在和中,根据三角形的三边关系定理可得,从而可得,再在中,根据三角形的三边关系定理可得,从而可得,由此即可得出答案【详解】解:如图,设这个凸五边形为,连接,并设,在中,即,在中,即,所以,在中,所以,观察四个选项可知,只有选项C符合,故选:C【考点】本题考查
8、了三角形的三边关系定理,通过作辅助线,构造三个三角形是解题关键4、B【解析】【分析】正确利用三角形内角和定理以及角平分线的定义即可解决问题正确证明ABPFBP,推出PA=PF,再证明APHFPD,推出PH=PD即可解决问题错误利用反证法,假设成立,推出矛盾即可 线 封 密 内 号学级年名姓 线 封 密 外 错误,可以证明S四边形ABDE=2SABP正确由DHPE,利用等高模型解决问题即可【详解】解:在ABC中,AD、BE分别平分BAC、ABCACB=90A+B=90又AD、BE分别平分BAC、ABCBAD+ABE=(A+B)=45APB=135,故正确BPD=45又PFADFPB=90+45=
9、135APB=FPB又ABP=FBPBP=BPABPFBP(ASA)BAP=BFP,AB=FB,PA=PF在APH和FPD中APHFPD(ASA)PH=PDAD=AP+PD=PF+PH故正确ABPFBP,APHFPDSAPB=SFPB,SAPH=SFPD,PH=PDHPD=90HDP=DHP=45=BPDHDEPSEPH=SEPDSAPH=SAED,故正确S四边形ABDE=SABP+SAEP+SEPD+SPBD=SABP+(SAEP+SEPH)+SPBD=SABP+SAPH+SPBD=SABP+SFPD+SPBD=SABP+SFBP=2SABP,故不正确若DH平分CDE,则CDH=EDHDHB
10、ECDH=CBE=ABECDE=ABCDEAB,这个显然与条件矛盾,故错误故选B【考点】 线 封 密 内 号学级年名姓 线 封 密 外 本题考查了角平分线的判定与性质,三角形全等的判定方法,三角形内角和定理,三角形的面积等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型5、C【解析】【分析】根据三角形的三边关系:任意两边之和大于第三边,任意两边之差小于第三边,求出a的取值范围即可得解【详解】根据三角形的三边关系得,即,则选项中4符合题意,故选:C【考点】本题主要考查了三角形的三边关系,熟练掌握相关不等关系是解决本题的关键二、多选题1、ACD【解析】【分析】根据三角形中线的定义:在
11、三角形中,连接一个顶点和它所对的边的中点的线段,和角平分线的定义进行逐一判断即可【详解】解:AD是角平分线,BAC=90,DAB=DAC=45,故B选项不符合题意;AE是中线,AE=EC,故D符合题意;AD不是中线,AE不是角平分线,得不到BD=CD,ABE=CBE,A和C选项都符合题意,故选ACD【考点】本题主要考查了三角形中线的定义,角平分线的定义,解题的关键在于能够熟练掌握相关定义2、BD【解析】【分析】已知一边和一角对应相等,再添加任意对对应角相等,或已知角的另一边相等就可以由AAS、ASA或SAS判定两个三角形全等【详解】解:选项A中与不是对应角,不能与已知构成AAS或ASA的判定,
12、无法判定三角形全等,故选项A不合题意;选项B中是对应角,结合已知可以由AAS判定,故选项B符合题意;选项C中是对应边,但不是两边及其夹角相等,无法判定,故选项C不合题意;选项B中由已知可得,是对应角,结合已知可以由ASA判定,故选项D符合题意;故选BD【考点】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:、注意:、不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有 线 封 密 内 号学级年名姓 线 封 密 外 两边一角对应相等时,角必须是两边的夹角3、BCD【解析】【分析】根据三角形的三边关系:两边之和大于第三边,两边之差小于第三边,逐项判断即可【详解】解:A不
13、能组成三角形,该项不符合题意; B,该项符合题意;C,该项符合题意;D,该项符合题意;故选:BCD【考点】本题考查三角形的成立条件,掌握三角形的三边关系是解题的关键4、ACD【解析】【分析】已知两个三角形的一组角和角的一组边相等,可添加已知角的另一组边相等,利用SAS判定三角形全等,也可以添加另外两个角中任意一组角相等,利用AAS或ASA判定三角形全等【详解】解:A选项,添加条件AC=AC,可利用SAS判定则ABCABC,选项正确,符合题意;B选项,添加条件BC=BC,不能判定两个三角形全等,选项不正确;C选项,添加条件B=B,可利用ASA判定ABCABC,选项正确,符合题意;D选项,添加条件
14、C=C,可利用AAS判定ABCABC, 选项正确,符合题意;故选ACD【考点】本题主要考查全等三角形的判定定理,解决本题的关键是要熟练掌握全等三角形的判定定理5、ABCD【解析】【分析】根据题意,结合已知条件与全等的判定方法对选项一一进行分析论证,排除错误答案【详解】是的中线, ,又 , , ,故D选项正确 , 故A选项正确; BFCE;故C选项正确是的中线, 和等底等高, 和面积相等,故B选项正确;故选:ABCD【考点】本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL三、填空题 线 封 密 内 号学级年名姓 线 封 密 外 1、【解
15、析】【分析】过点B作 交DC的延长线交于点F,证明 推出,可得,由此即可解决问题;【详解】解:过点B作交DC的延长线交于点F,如右图所示, , , ,即,故答案为【考点】本题考查全等三角形的判定和性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型2、12【解析】【详解】多边形内角和为180(n-2),则每个内角为180(n-2)n,n=12,所以应填12.3、40【解析】【分析】直接利用三角形内角和定理得出6+7的度数,进而得出答案【详解】如图所示:1+2+6=180,3+4+7=180,1+2+3+4=220, 线 封 密 内 号学级年名姓 线 封 密 外 1+2
16、+6+3+4+7=360,6+7=140,5=180-(6+7)=40故答案为40【考点】主要考查了三角形内角和定理,正确应用三角形内角和定理是解题关键4、 30 2【解析】【分析】根据中心对称图形的性质,得到,再由全等三角形的性质解题即可【详解】解:A为对称中心,绕点A旋转能与重合,【考点】本题考查中心对称图形的性质、全等三角形的性质等知识,是基础考点,掌握相关知识是解题关键5、7.5【解析】【分析】观察三角形之间的关系,利用等高或同高的两个三角形的面积之比等于底之比,利用已知比例关系进行转化求解【详解】如下图所示,连接, ,设, ,由,可得, , 线 封 密 内 号学级年名姓 线 封 密
17、外 解得 , 故答案为:7.5【考点】本题考查的是等高同高三角形,应用等高或同高的两个三角形的面积之比等于底之比进行求解是本题的关键四、解答题1、(1)见解析;(2)DE6cm【解析】【分析】(1)根据BD直线m,CE直线m,得BDA=CEA=90,而BAC=90,根据等角的余角相等得CAE=ABD,然后根据“AAS”可判断ADBCEA;(2)根据全等三角形的性质得出AE=BD,AD=CE,于是DE=AE+AD=BD+CE【详解】解:(1)BD直线m,CE直线m,BDACEA90,BAC90,BAD+CAE90,BAD+ABD90,CAEABD,在ABD和CAE中,ABDCAE(AAS),(2
18、)ABDCAE,AEBD,ADCE,DEAE+ADBD+CE,BD2cm,CE4cm,DE6cm;【考点】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;得出CAE=ABD是解题关键2、见解析【解析】【分析】将ABE绕点A逆时针旋转90得到ADG,根据旋转的性质可得GD=BE,AG=AE,DAG=BAE,然后求出FAG=EAF,再利用“边角边”证明AEF和AGF全等,根据全等三角形对应边相等可得EF=FG,即可得出结论【详解】如解图,将绕点逆时针旋转至的位置,使与重合 线 封 密 内 号学级年名姓 线 封 密 外 ,在和中,【考点】本题考
19、查了正方形的性质,旋转的性质,全等三角形的判定与性质,难点在于利用旋转变换作出全等三角形3、(1)见解析;(2)图:;图:【解析】【分析】(1)过点作交的延长线于点证明,根据全等三角形的性质可得,再证,由此即可证得结论;(2)图:,类比(1)中的方法证明即可;图:,类比(1)中的方法证明即可【详解】(1)证明:如图,过点作交的延长线于点0,在和中, 线 封 密 内 号学级年名姓 线 封 密 外 ,在和中,(2)图:证明:过点作交于点,在和中,在和中,图:证明:如图,过点作交的延长线于点 线 封 密 内 号学级年名姓 线 封 密 外 ,在和中,在和中,【考点】本题是全等三角形的综合题,正确作出辅
20、助线,构造全等三角形是解决问题的关键4、详见解析【解析】【分析】先作ABC的角平分线BD,再过点D作AC的垂线交AB于P,则利用PDBC得到PDBCBD,于是可证明PDBCBD,所以PBPD【详解】解:如图,点P为所作 线 封 密 内 号学级年名姓 线 封 密 外 【考点】此题主要考查尺规作图,解题的关键是熟知角平分线的作法与平行线的性质.5、(1)ACBDFE,ACDF;(2)选择添加条件ACDE,证明见解析【解析】【分析】(1)根据题意添加条件即可;(2)选择添加条件ACDE,根据“HL”证明即可【详解】(1)根据“ASA”,需添加的条件是ACBDFE,根据“HL”,需添加的条件是ACDF,故答案为:ACBDFE,ACDF;(2)选择添加条件ACDE证明,证明:ABCDEF90,在RtABC和RtDEF中,RtABCRtDEF(HL)【考点】本题考查了全等三角形的判定,熟知全等三角形的判定定理是解题关键,证明三角形全等时注意条件的对应