1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版数学八年级上册期中考试试题 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、如图,在中,连接BC,CD,则的度数是()A45B50C55D802、如图,已
2、知和都是等腰三角形,交于点F,连接,下列结论:;平分;其中正确结论的个数有()A1个B2个C3个D4个3、如图,足球图片正中的黑色正五边形的内角和是()A180B360C540D7204、两个直角三角板如图摆放,其中,AB与DF交于点M若,则的大小为()ABCD5、如图,OB平分AOC,D、E、F分别是射线OA、射线OB、射线OC上的点,D、E、F与O点都不重合,连接ED、EF若添加下列条件中的某一个就能使DOEFOE,你认为要添加的那个条件是()AOD=OEBOE=OF 线 封 密 内 号学级年名姓 线 封 密 外 CODE =OEDDODE=OFE二、多选题(5小题,每小题4分,共计20分
3、)1、如图,为估计池塘岸边A,B两点间的距离,小方在池塘的一侧选取一点O,测得米,米,A,B间的距离可能是()A12米B10米C15米D8米2、下列长度的各种线段,可以组成三角形的是()A2,3,4B1,1,2C5,5,9D7,5,13、在下列正多边形组合中,能铺满地面的是()A正八边形和正方形B正五边形和正八边形C正六边形和正三角形D正三角形和正方形4、如图,下列结论正确的是()ABCD5、如图,下列条件中,能证明的是()A,B,C,D,第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、如图所示,在四边形ABCD中,ADAB,C=110,它的一个外角ADE=60,则B的
4、大小是_2、若长度分别为3,4,a的三条线段能组成一个三角形,则整数a的值可以是_(写出一个即可)3、如图所示的图案是由全等的图形拼成的,其中AD=0.5,BC=1,则AF=_4、有一张直角三角形纸片,记作ABC,其中B=90按如图方式剪去它的一个角(虚线部分),在剩下的四边形ADEC中,若1=165,则2的度数为_ 线 封 密 内 号学级年名姓 线 封 密 外 5、已知ABC,A=80,BF平分外角CBD,CF平分外角BCE,BG平分CBF,CG平分外角BCF,则G=_四、解答题(5小题,每小题8分,共计40分)1、如图,已知在中,求证:2、已知如图,E.F在BD上,且ABCD,BFDE,A
5、ECF,求证:AC与BD互相平分.3、如图,在四边形ABCD中,BCBA,AD=CD,BD平分ABC,求证:A+C=1804、如图,是边长为1的等边三角形,点,分别在,上,且,求的周长5、如图,AD是ABC的角平分线,DE、DF分别是ABD和ACD的高(1)求证:AD垂直平分EF;(2)若AB+AC10,SABC15,求DE的长-参考答案-一、单选题1、B【解析】 线 封 密 内 号学级年名姓 线 封 密 外 【分析】连接AC并延长交EF于点M由平行线的性质得,再由等量代换得,先求出即可求出【详解】解:连接AC并延长交EF于点M,故选B【考点】本题主要考查了平行线的性质以及三角形的内角和定理,
6、属于基础题型2、C【解析】【分析】证明BADCAE,再利用全等三角形的性质即可判断;由BADCAE可得ABF=ACF,再由ABF+BGA=90、BGA=CGF证得BFC=90即可判定;分别过A作AMBD、ANCE,根据全等三角形面积相等和BD=CE,证得AM=AN,即AF平分BFE,即可判定;由AF平分BFE结合即可判定【详解】解:BAC=EADBAC+CAD=EAD+CAD,即BAD=CAE在BAD和CAE中AB=AC, BAD=CAE,AD=AEBADCAEBD=CE故正确;BADCAEABF=ACFABF+BGA=90、BGA=CGFACF+BGA=90,BFC=90故正确; 线 封 密
7、 内 号学级年名姓 线 封 密 外 分别过A作AMBD、ANCE垂足分别为M、NBADCAESBAD=SCAE, BD=CEAM=AN平分BFE,无法证明AF平分CAD故错误;平分BFE,故正确故答案为C【考点】本题考查了全等三角形的判定与性质、角平分线的判定与性质以及角的和差等知识,其中正确应用角平分线定理是解答本题的关键3、C【解析】【分析】根据多边形内角和公式即可求出结果【详解】解:黑色正五边形的内角和为:,故选C【考点】本题考查了多边形的内角和公式,解题关键是牢记多边形的内角和公式4、C【解析】【分析】根据,可得再根据三角形内角和即可得出答案【详解】由图可得, 线 封 密 内 号学级年
8、名姓 线 封 密 外 故选:C【考点】本题考查了平行线的性质和三角形的内角和,掌握平行线的性质和三角形的内角和是解题的关键5、D【解析】【分析】根据OB平分AOC得AOB=BOC,又因为OE是公共边,根据全等三角形的判断即可得出结果【详解】解:OB平分AOCAOB=BOC当DOEFOE时,可得以下结论:OD=OF,DE=EF,ODE=OFE,OED=OEFA答案中OD与OE不是DOEFOE的对应边,A不正确;B答案中OE与OF不是DOEFOE的对应边,B不正确;C答案中,ODE与OED不是DOEFOE的对应角,C不正确;D答案中,若ODE=OFE,在DOE和FOE中, DOEFOE(AAS)D
9、答案正确故选:D【考点】本题考查三角形全等的判断,理解全等图形中边和角的对应关系是解题的关键二、多选题1、ABD【解析】【分析】根据三角形的三边之间的关系逐一判断即可得到答案.【详解】解:中, 符合题意,不符合题意;故选:【考点】本题考查的是三角形的三边关系的应用,掌握三角形的任意两边之和大于第三边,任意两边之差小于第三边是解题的关键.2、AC【解析】【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析【详解】 线 封 密 内 号学级年名姓 线 封 密 外 解:A、 ,能构成三角形,符合题意;B、1+1=2,不能构成三角形,不符合题意;C、,能构成三角形,符
10、合题意;D、5+17,不能构成三角形,不符合题意故选AC【考点】此题主要考查了三角形三边关系,根据第三边的范围是:大于已知的两边的差,而小于两边的和是解决问题的关键3、ACD【解析】【分析】正多边形的组合能否铺满地面,关键是看位于同一顶点处的几个角之和能否为360若能,则说明能铺满;反之,则说明不能铺满【详解】解:A、正方形的每个内角是90,正八边形的每个内角是135,由于902135360,故能铺满,符合题意;B、正五边形和正八边形内角分别为108、135,显然不能构成360的周角,故不能铺满,不合题意;C、正六边形和正三角形内角分别为120、60,由于604120360,故能铺满,符合题意
11、;D、正三角形、正方形内角分别为60、90,由于603902360,故能铺满,符合题意故选:ACD【考点】本题考查了平面密铺的知识,几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角4、AD【解析】【分析】根据三角形的一个外角等于和它不相邻的两个内角的和作答【详解】A、1是ABC的一个外角,123,正确,符合题意;B、1是ABC的一个外角,123,选项错误,不符合题意;C、1是ABC的一个外角,123,又2是CDE的一个外角,245,选项错误,不符合题意;D、2是CDE的一个外角,245,正确,符合题意故选:AD【考点】本题主要考查了三角形的外角性质,解题关键是
12、掌握一个外角等于和它不相邻的两个内角的和5、ABC【解析】 线 封 密 内 号学级年名姓 线 封 密 外 【分析】根据全等三角形的判定方法一一判断即可【详解】解:A由,根据可以证明,本选项符合题意;B由,根据能判断三角形全等,本选项符合题意;C由,推出,因为,根据可以证明,本选项符合题意;D由,根据不可以证明,本选项不符合题意;故选:【考点】本题考查全等三角形的判定和性质,等腰三角形的性质等知识,熟练掌握全等三角形的判定方法是解题的关键三、填空题1、40【解析】【详解】【分析】根据外角的概念求出ADC的度数,再根据垂直的定义、四边形的内角和等于360进行求解即可得.【详解】ADE=60,ADC
13、=120,ADAB,DAB=90,B=360CADCA=40,故答案为40【考点】本题考查了多边形的内角和外角,掌握四边形的内角和等于360、外角的概念是解题的关键2、5(答案不唯一)【解析】【分析】根据三角形的任意两边之和大于第三边,任意两边之差小于第三边进行求解即可【详解】解:由题意知:43a4+3,即1a7,整数a可取2、3、4、5、6中的一个,故答案为:5(答案不唯一)【考点】本题考查三角形的三边关系,能根据三角形的三边关系求出第三边a的取值范围是解答的关键3、6【解析】【分析】由图形知,所示的图案是由梯形ABCD和七个与它全等的梯形拼接而成,根据全等则重合的性质求解即可【详解】解:由
14、题可知,图中有8个全等的梯形,所以AF=4AD+4BC=40.5+41=6故答案为:6【考点】 线 封 密 内 号学级年名姓 线 封 密 外 考查了全等图形的性质,本题利用了全等形图形一定重合的性质求解,做题的关键是找准相互重合的对应边4、105.【解析】【分析】根据三角形内角和定理结合B的度数即可得出BDE+BED的度数,再根据BDE与2互补、BED与1互补,即可求出1+2的度数,代入1=165即可得出结论【详解】B=90,BDE+BED=180-B=90,又BDE+2=180,BED+1=180,1+2=360-(BDE+BED)=2701=165,2=105故答案为:105【考点】本题考
15、查了三角形内角和定理,根据三角形内角和定理求出BDE+BED的度数是解题的关键5、115【解析】【分析】由三角形外角的性质即三角形的内角和定理可求解DBC+ECB=260,再利用角平分线的定义可求解FBC+FCB=130,即可得GBC+GCB=65,再利用三角形内角和定理可求解【详解】解:DBC=A+ACB,ECB=A+ABC,DBC+ECB=A+ACB+A+ABC,ACB+A+ABC=180,DBC+ECB=A+180=80+180=260,BF平分外角DBC,CF平分外角ECB,FBC=DBC,FCB=ECB,FBC+FCB=(DBC+ECB)=130,BG平分CBF,CG平分BCF,GB
16、C=FBC,GCB=FCB,GBC+GCB=(FBC+FCB)=65,G=180-(GBC-GCB)=180-65=115故答案为:115【考点】本题主要考查三角形的内角和定理,三角形外角的性质,角平分线的定义,求解FBC+FCB=130是解题的关键四、解答题1、见解析【解析】【分析】证明,为三角形的全等提供条件即可【详解】 线 封 密 内 号学级年名姓 线 封 密 外 证明:,在和中,(ASA) 【考点】本题考查了ASA证明三角形的全等,抓住题目的特点,补充全等需要的条件是解题的关键2、见解析【解析】【分析】根据已知条件易证ABEDFC,由全等三角形的对应角相等可得B=D,再利用AAS证明A
17、BOCOD,所以AO=CO,BO=DO,即可证明AC与BD互相平分【详解】证明:BF=DE,BF-EF=DE-EF即BE=DF,在ABE和DFC中, ABEDFC(SSS),B=D在ABO和CDO中, ABOCDO(AAS),AO=CO,BO=DO,即AC与BD互相平分【考点】本题考查了全等三角形的判定与性质,解题关键是通过证明ABEDFC得B=D,为证明ABOCOD提供条件3、见解析【解析】【分析】先在线段BC上截取BE=BA,连接DE,根据BD平分ABC,可得ABD=EBD,根据,可判定ABDEBD,根据全等三角形的性质可得:AD=ED,A=BED再根据AD=CD,等量代换可得ED=CD,
18、根据等边对等角可得:DEC=C由BED+DEC=180,可得A+C=180 线 封 密 内 号学级年名姓 线 封 密 外 【详解】证明:在线段BC上截取BE=BA,连接DE,如图所示,BD平分ABC,ABD=EBD,在ABD和EBD中,ABDEBD(SAS),AD=ED,A=BEDAD=CD,ED=CD,DEC=CBED+DEC=180,A+C=180【考点】本题主要考查全等三角形的判定和性质,解决本题的关键是要熟练掌握全等三角形的判定和性质.4、2【解析】【分析】延长至点,使,连接,证明推出,进而得到,从而证明,推出EF=CP,由此求出的周长=AB+AC得到答案.【详解】解:如图,延长至点,
19、使,连接是等边三角形,在和中,在和中, 线 封 密 内 号学级年名姓 线 封 密 外 ,的周长.【考点】此题考查全等三角形的判定及性质,等边三角形的性质,等腰三角形等边对等角的性质,题中辅助线的引出是解题的关键.5、(1)见解析;(2)【解析】【分析】(1)由角平分线的性质得DEDF,再根据HL证明RtAEDRtAFD,得AEAF,从而证明结论;(2)根据DEDF,得,代入计算即可【详解】(1)证明:AD是ABC的角平分线,DE、DF分别是ABD和ACD的高,DEDF,在RtAED与RtAFD中,RtAEDRtAFD(HL),AEAF,DEDF,AD垂直平分EF;(2)解:DEDF,AB+AC10,DE3【考点】本题考查了全等三角形的判定与性质,角平分线的性质,解题的关键是掌握这些知识点