1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版数学八年级上册期中考试练习试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、如图,ACD是ABC的外角,CE平分ACD,若A=60,B=40,
2、则ECD等于()A40B45C50D552、如图,一束太阳光线平行照射在放置于地面的正六边形上,若,则的度数为( )ABCD3、三个等边三角形的摆放位置如图所示,若,则的度数为()ABCD4、如图,ABC中,B=2A,ACB的平分线CD交AB于点D,已知AC=16,BC=9,则BD的长为()A6B7C8D95、如图,在ABC中,C90,O为ABC的三条角平分线的交点,ODBC,OEAC,OFAB,点D、E、F分别是垂足,且AB10cm,BC8cm,CA6cm,则点O到边AB的距离为()A2cmB3cmC4cmD5cm二、多选题(5小题,每小题4分,共计20分)1、下列不是真命题的是()A如果
3、ab,ac,那么 bcB相等的角是对顶角C一个角的补角大于这个角D一个三角形中至少有两个锐角 线 封 密 内 号学级年名姓 线 封 密 外 2、如图,EADF,AE=DF,要使AECDFB,可以添加的条件有()AAB=CDBAC=BDCA=DDE=F3、已知三角形的六个元素如图所示,则甲、乙、丙三个三角形中与全等的是()A甲B乙C丙D不能确定4、下列说法中,正确的是( )A用同一张底片冲出来的10张五寸照片是全等形;B我国国旗上的四颗小五角星是全等形;C所有的正六边形是全等形D面积相等的两个直角三角形是全等形5、若一个三角形的两边长分别为5和7,则该三角形的周长可能是()A12B16C19D2
4、5第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、如图,在中,点D在上,将沿直线翻折后,点C落在点E处,联结,如果DE/AB,那么的度数是_度2、如图,在和中,则_3、如图,在ABC中,点D是AC的中点,分别以AB,BC为直角边向ABC外作等腰直角三角形ABM和等腰直角三角形BCN,其中ABMNBC90,连接MN,已知MN4,则BD_4、如图,D,E,F分别是的边,上的中点,连接,交于点G,的面积为6,设的面积为,的面积为,则=_5、如图,在四边形中,于,则的长为_ 线 封 密 内 号学级年名姓 线 封 密 外 四、解答题(5小题,每小题8分,共计40分)1、如图,在A
5、BC中,ABC、ACB的平分线交于点D,延长BD交AC于E,G、F分别在BD、BC上,连接DF、GF,其中A2BDF,GDDE(1)当A80时,求EDC的度数;(2)求证:CFFGCE2、如图,CE,ACAE,点D在BC边上,12,AC和DE相交于点O求证:ABCADE3、如图,已知,求证:.4、如图,在等腰三角形ABC中,A=90,AB=AC=6,D是BC边的中点,点E在线段AB上从B向A运动,同时点F在线段AC上从点A向C运动,速度都是1个单位/秒,时间是t秒(0t6),连接DE、DF、EF(1)请判断EDF形状,并证明你的结论(2)以A、E、D、F四点组成的四边形面积是否发生变化?若不变
6、,求出这个值;若变化,用含t的式子表示5、一个零件形状如图所示,按规定应等于75,和应分别是18和22,某质检员测得,就断定这个零件不合格,请你运用三角形的有关知识说明零件不合格的理由-参考答案-一、单选题1、C【解析】 线 封 密 内 号学级年名姓 线 封 密 外 【分析】根据三角形外角性质求出ACD,根据角平分线定义求出即可【详解】A=60,B=40,ACD=A+B=100,CE平分ACD,ECD=ACD=50,故选C【考点】本题考查了角平分线定义和三角形外角性质,熟记三角形外角性质的内容是解此题的关键2、A【解析】【分析】先求出正六边形的内角和外角,再根据三角形的外角性质以及平行线的性质
7、,即可求解【详解】解:正六边形的每个内角等于120,每个外角等于60,FAD=120-1=101,ADB=60,ABD=101-60=41光线是平行的,=ABD=,故选A【考点】本题主要考查平行线的性质,三角形外角性质以及正六边形的性质,掌握三角形的外角性质以及平行线的性质是解题的关键3、B【解析】【分析】先根据图中是三个等边三角形可知三角形各内角均等于60,用表示出中间三角形的各内角,再根据三角形的内角和即可得出答案【详解】解:如图所示,图中三个等边三角形,由三角形的内角和定理可知: 线 封 密 内 号学级年名姓 线 封 密 外 ,即,又,故答案选B【考点】本题考查等边三角形的性质及三角形的
8、内角和定理,熟悉等边三角形各内角均为60是解答此题的关键4、B【解析】【分析】如图,在上截取 连接证明利用全等三角形的性质证明 求解 再证明 从而可得答案【详解】解:如图,在上截取 连接 平分 故选:【考点】本题考查的是全等三角形的判定与性质,等腰三角形的判定,掌握以上知识是解题的关键5、A【解析】【分析】根据角平分线的性质得到OEOFOD,设OEx,然后利用三角形面积公式得到SABCSOAB+SOAC+SOCB,于是可得到关于x的方程,从而可得到OF的长度【详解】解:点O为ABC的三条角平分线的交点,OEOFOD,设OEx,SABCSOAB+SOAC+SOCB, 5x+3x+4x24, 线
9、封 密 内 号学级年名姓 线 封 密 外 x2,点O到AB的距离等于2故选:A【考点】本题考查了角平分线的性质:角平分线上的点到这个角两边的距离相等,面积法的应用是解题的关键二、多选题1、ABC【解析】【分析】根据不等式的性质、对顶角的性质、三角形和补角的性质进行判断即可【详解】解:A、如果 ab,ac,不能判断b,c的大小,原命题是假命题;B、相等的角不一定是对顶角,原命题是假命题;C、一个角的补角不一定大于这个角,原命题是假命题;D、一个三角形中至少有两个锐角,原命题是真命题;故选:ABC【考点】本题考查了命题与定理的知识,解题的关键是了解不等式的性质、对顶角的性质、三角形和补角的性质,属
10、于基础知识,难度不大2、ABD【解析】【分析】由AEDF可得A=D,要判定AECDFB,已知一边一角,根据三角形全等的判定方法,如果要加边相等,只能是AC=DB(或AB=CD);如果要加角相等,可以是E=F或者是ACE=DBF,结合四个选项即可求解【详解】解:AEDF,A=D,A、AB=CD,AB+BC=CD+BC,即AC=DB,又AE=DF,A=D,根据SAS能推出AECDFB,故本选项符合题意;B、AC=BD,AE=DF,A=D,根据SAS能推出AECDFB,故本选项符合题意;C、A=D,AE=DF,不能推出AECDFB,故本选项不符合题意;D、E=F,AE=DF,A=D,根据ASA能推出
11、AECDFB,故本选项符合题意;故选:ABD【考点】本题考查了全等三角形的判定定理和平行线的性质,能熟记全等三角形的判定定理的内容是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS3、BC【解析】【分析】 线 封 密 内 号学级年名姓 线 封 密 外 根据全等三角形的判定定理(SAS,ASA,AAS,SSS)逐个判断即可【详解】解:已知ABC中,B50,C58,A72,BCa,ABc,ACb,图甲:只有一条边和AB相等,没有其它条件,不符合三角形全等的判定定理,即和ABC不全等;图乙:只有两个角对应相等,还有一条边对应相等,符合三角形全等的判定定理(AAS),即和ABC
12、全等;图丙:有两边及其夹角,符合三角形全等的判定定理(SAS),能推出两三角形全等;故选:BC【考点】本题考查了全等三角形的判定,解题的关键是注意掌握判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS4、AB【解析】【分析】根据能互相重合的两个图形叫做全等图形对各小题分析判断即可得解【详解】解:A、用同一张底片冲出来的10张五寸照片是全等形,正确;B、我国国旗上的四颗小五角星是全等形,正确;C、所有的正六边形是全等形,错误,正六边形的边长不一定相等;D、面积相等的两个直角三角形是全等形,错误故选:AB【考点】本题考查了全等图形,熟记概念是解题的关键,多边形要注意从角和边两个方面考虑
13、5、BC【解析】【分析】先根据三角形三条边的关系求出第三条边的取值范围,进而求出周长的取值范围,从而可的求出符合题意的选项【详解】解:三角形的两边长分别为5和7,7-5=2第三条边7+5=12,5+7+2三角形的周长5+7+12,即14三角形的周长24,故选BC【考点】本题考查了三角形三条边的关系:三角形任意两边之和大于第三边,任意两边之差小于第三边,据此解答即可三、填空题1、40【解析】【分析】先求出BAC,由AB/DE得出E=BAE,再根据翻折得性质得E=C,CAD=EAD,即可求出答案【详解】B=40,C=30,BAC=180-40-30=110, 线 封 密 内 号学级年名姓 线 封
14、密 外 根据翻折的性质可知,E=C,CAD=EAD,E=30,AB/DE,E=BAE=30,EAC=BAC-BAE=110-30=80,CAD=EAD=EAC=40,故答案为:40【考点】题目主要考查三角形翻折的性质,平行线的性质,三角形内角和定理等,理解题意,综合运用各个知识点是解题关键2、130【解析】【分析】证明ABCADC即可【详解】,AC=AC,ABCADC,D=B=130,故答案为:130【考点】本题考查了全等三角形的判定和性质,掌握判定定理是解题关键3、2【解析】【分析】延长BD到E,使DE=BD,连接AE,证明ADECDB(SAS),可得AE=CB,EAD=BCD,再根据ABM
15、和BCN是等腰直角三角形,证明MBNBAE,可得MN=BE,进而可得BD与MN的数量关系即可求解【详解】解:如图,延长BD到E,使DE=BD,连接AE,点D是AC的中点,AD=CD,在ADE和CDB中,ADECDB(SAS),AE=CB,EAD=BCD,ABM和BCN是等腰直角三角形,AB=BM,CB=NB,ABM=CBN=90,BN=AE,又MBN+ABC=360-90-90=180,BCA+BAC+ABC=180,MBN=BCA+BAC=EAD+BAC=BAE,在MBN和BAE中, 线 封 密 内 号学级年名姓 线 封 密 外 ,MBNBAE(SAS),MN=BE,BE=2BD,MN=2B
16、D又MN=4,BD=2,故答案为:2【考点】本题考查了全等三角形的判定与性质、等腰直角三角形,解决本题的关键是掌握全等三角形的判定与性质4、【解析】【分析】根据同高三角形的面积比就是相应底的比进行推导即可求得答案【详解】解:是的中点,、分别是、的中点,设的面积为,的面积为故答案是:【考点】本题考查了与三角形中线有关的三角形面积问题,涉及到了三角形中线的性质、三角形的面积公式、同高三角形面积之比等于相应底的比等,难度不大5、【解析】【分析】过点B作 交DC的延长线交于点F,证明 推出,可得,由此即可解决问题;【详解】解:过点B作交DC的延长线交于点F,如右图所示, , 线 封 密 内 号学级年名
17、姓 线 封 密 外 , ,即,故答案为【考点】本题考查全等三角形的判定和性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型四、解答题1、 (1)(2)证明见解析【解析】【分析】(1)根据三角形内角和与角平分线定义可得,再根据外角性质即可求出;(2)在线段上取一点,使,连接,证明,得到,利用全等三角形的性质与外角性质得出,证明,从而得到,即可证明结论(1)解:在ABC中,A80,ABC、ACB的平分线交于点D,EDC=DBC+DCB;(2)解:在线段上取一点,使,连接,如图所示:平分,在和中, 线 封 密 内 号学级年名姓 线 封 密 外 ,为的一个外角,为的一个外角
18、,平分,A2BDF,在和中,【考点】本题考查三角形综合,涉及到三角形内角和定理的运用、角平分线定义、外角性质求角度、三角形全等的判定与性质等知识点,正确的做辅助线是解决问题的关键2、见解析【解析】【分析】先利用三角形外角性质证明ADE=B,然后根据“AAS”判断ABCADE【详解】ADC1+B, 即ADE+21+B,而12, ADEB,在ABC和ADE中, ABCADE(AAS)【考点】本题考查了全等三角形的判定:熟练掌握全等三角形的5种判定方法选用哪一种方法,取决于题目中的已知条件3、证明见解析.【解析】【分析】 线 封 密 内 号学级年名姓 线 封 密 外 利用SSS可证明ABDACE,可
19、得BAD=1,ABD=2,根据三角形外角的性质即可得3=BAD+ABD,即可得结论.【详解】在ABD和ACE中,ABDACE,BAD=1,ABD=2,3=BAD+ABD,3=1+2.【考点】本题考查全等三角形的判定与性质及三角形外角性质,熟练掌握判定定理及外角性质是解题关键.4、(1)EDF为等腰直角三角形,证明见解析;(2)四边形AEDF面积不变,9【解析】【分析】(1)连接AD,利用等腰直角三角形的性质根据SAS证明BDEADF,即可得到结论;(2)根据(1)得到SBDE=SADF,推出S四边形AEDF=SADF+SADE=SABD=SABC,根据公式计算即可得到答案.【详解】解:(1)E
20、DF为等腰直角三角形,理由如下:连接AD,AB=AC,BAC=90,点D是BC中点,AD=BD=CD=BC,AD平分BAC,B=C=BAD=CAD=45,点E、F速度都是1个单位秒,时间是t秒,BE=AF,又B=DAF=45,AD=BD,BDEADF(SAS),DE=DF,BDE=ADFBDE+ADE=90,ADF+ADE=90,EDF=90,EDF为等腰直角三角形;(2)四边形AEDF面积不变,理由:由(1)可知,BDEADF,SBDE=SADF,S四边形AEDF=SADF+SADE=SABD=SABC,S四边形AEDF=ACAB=9.【考点】 线 封 密 内 号学级年名姓 线 封 密 外 此题考查等腰直角三角形的性质,等腰三角形三线合一的性质,全等三角形的判定及性质.5、不合格,理由见解析【解析】【分析】延长BD与AC相交于点E利用三角形的外角性质,可得,即可求解【详解】解:如图,延长BD与AC相交于点E是的一个外角,同理可得李师傅量得,不是115,这个零件不合格【考点】本题主要考查了三角形的外角性质,熟练掌握三角形的一个外角等于与它不相邻的两个内角的和是解题的关键