1、人教版八年级数学上册第十五章分式专项测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若分式在实数范围内有意义,则x的取值范围是()Ax5Bx0Cx5Dx52、化简的结果是()AaBa+1Ca1Da21
2、3、在一段坡路,小明骑自行车上坡的速度为每小时v1千米,下坡时的速度为每小时v2千米,则他在这段路上、下坡的平均速度是每小时()A千米B千米C千米D无法确定4、若关于x的分式方程有增根,则m的值是()A1B1C2D25、要把分式方程化为整式方程,方程两边要同时乘以()ABCD6、若代数式有意义,则实数的取值范围是()ABCD7、分式方程的解是()A0B2C0或2D无解8、已知某新型感冒病毒的直径约为0.000000823米,将0.000000823用科学记数法表示为()A8.23106B8.23107C8.23106D8.231079、如果,那么代数式的值为ABCD10、一支部队排成a米长队行
3、军,在队尾的战士要与最前面的团长联系,他用t1分钟追上了团长、为了回到队尾,他在追上团长的地方等待了t2分钟如果他从最前头跑步回到队尾,那么他需要的时间是()A分钟B分钟C分钟D分钟第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、关于的分式方程的解为正数,则的取值范围是_2、计算:(1)_;(2)_3、计算:_4、函数y=中,自变量x的取值范围是_5、若关于x的分式方程的解是正数,则k的取值范围是_三、解答题(5小题,每小题10分,共计50分)1、某药店在今年3月份,购进了一批口罩,这批口罩包括有一次性医用外科口罩和N95口罩,且两种口罩的只数相同其中购进一次性医用外科
4、口罩花费1600元,N95口罩花费9600元已知购进一次性医用外科口罩的单价比N95口罩的单价少10元(1)求该药店购进的一次性医用外科口罩和N95口罩的单价各是多少元?(2)该药店计划再次购进两种口罩共2000只,预算购进的总费用不超过1万元,问至少购进一次性医用外科口罩多少只?2、某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润率不低于2
5、5%(不考虑其它因素),那么每件衬衫的标价至少是多少元?3、化简(1)(2)4、先化简:1-2x-1x2-6x+9x2-x再求值,其中是从1,2,3中选取的一个合适的数5、若a,b为实数,且,求3ab的值-参考答案-一、单选题1、A【解析】【分析】根据分式有意义的条件列不等式求解【详解】解:根据分式有意义的条件,可得:,故选:A【考点】本题考查分式有意义的条件,理解分式有意义的条件是分母不能为零是解题关键2、B【解析】【分析】先把原式转化成同分母的分式,然后相加,运用平方差公式把分子因式分解,然后分子分母同时除以公因式(a-1)即可.【详解】解:原式= ,故本题答案为:B.【考点】分式的化简是
6、本题的考点,运用平方差公式把分子进行因式分解找到分子分母的公因式是解题的关键.3、C【解析】【详解】平均速度=总路程总时间,题中没有单程,可设单程为1,那么总路程为2依题意得:2()=2=千米故选C【考点】解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系当题中没有一些必须的量时,为了简便,可设其为14、C【解析】【分析】先把分式方程化为整式方程,再把增根x=2代入整式方程,即可求解【详解】解:,去分母得:,关于x的分式方程有增根,增根为:x=2,即:m=2,故选C【考点】本题主要考查解分式方程以及分式方程的增根,把分式方程化为整式方程是解题的关键5、D【解析】【分析】根据最
7、简公分母的确定方法确定分式的最简公分母即可解答.【详解】解:分式的最简公分母2x(x-2),把分式方程化为整式方程,方程两边要同时乘以2x(x-2).故选D.【考点】本题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解解分式方程一定注意要验根6、D【解析】【分析】分式有意义的条件是分母不为【详解】代数式有意义,故选D【考点】本题运用了分式有意义的条件知识点,关键要知道分母不为是分式有意义的条件7、D【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解【详解】去分母得,解得,经检验是增根,则分式方程无解故选:D【考
8、点】本题考查了解分式方程,利用了转化的思想,解分式方程注意要检验8、B【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:0.000000823=8.2310-7故选B【考点】本题考查用科学记数法表示较小的数,一般形式为a10-n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定9、A【解析】【详解】分析:根据分式混合运算的法则进行化简,再把整体代入即可.详解:原式,原式故选A.点睛:考查分式的化简求值,熟练掌握分式混合运算的
9、法则是解题的关键.10、C【解析】【分析】根据题意得到队伍的速度为,队尾战士的速度为,可以得到他从最前头跑步回到队尾,那么他需要的时间是,化简即可求解【详解】解:由题意得:分钟故选:C【考点】本题考查了根据题意列分式计算,理解题意正确列出分式是解题关键二、填空题1、且【解析】【分析】直接解分式方程,进而利用分式方程的解是正数得出的取值范围,进而结合分式方程有意义的条件分析得出答案【详解】去分母得:,解得:,解得:,当时,不合题意,故且故答案为且【考点】此题主要考查了分式方程的解,注意分式的解是否有意义是解题关键2、 #0.5 【解析】【分析】(1)由负整数指数幂的运算法则计算即可(2)由零指数
10、幂的运算法则计算即可【详解】(1)(2)故答案为:,【考点】本题考查了负整数指数幂以及零指数幂的运算法则,即任何不等于0的数的0次幂都等于1;是由在,时转化而来的,也就是说当同底数幂相除时,若被除式的指数小于除式的指数,则转化成负指数幂的形式3、5【解析】【分析】根据绝对值和零指数幂进行计算即可【详解】解:,故答案为:5【考点】本题考查了绝对值和零指数幂的计算,熟练掌握定义是解题的关键4、x1【解析】【分析】根据分式中分母不等于0列式求解即可.【详解】解:根据题意得, x-10,解得x1.故答案为: x1.【考点】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变
11、量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.5、且【解析】【分析】根据题意,将分式方程的解用含的表达式进行表示,进而令,再因分式方程要有意义则,进而计算出的取值范围即可【详解】解: 根据题意且k的取值范围是且【考点】本题主要考查了分式方程的解及分式方程有意义的条件、一元一次不等式组的求解,熟练掌握相关计算方法是解决本题的关键三、解答题1、(1)一次性医用口罩和N95口单价分别是2元,12元;(2)药店购进一次性医用口罩至少1400只【解析】【分析】(1)设一次性医用口罩单价为x元,则N95口罩的单价为元,列分式方程求解即可;
12、(2)设购进一次性医用口罩y只,根据题意列不等式求解即可【详解】解:(1)设一次性医用口罩单价为x元,则N95口罩的单价为元由题意可知,解方程得 经检验是原方程的解,当时, 答:一次性医用口罩和N95口单价分别是2元,12元(2)设购进一次性医用口罩y只根据题意得, 解不等式得答:药店购进一次性医用口罩至少1400只【考点】本题考查的是分式方程的应用,一元一次不等式的应用,掌握列分式方程与列不等式是解题的关键2、(1)120件;(2)150元【解析】【分析】(1)设该商家购进的第一批衬衫是x件,则购进第二批这种衬衫可设为2x件,由已知可得,这种衬衫贵10元,列出方程求解即可(2)设每件衬衫的标
13、价至少为a元,由(1)可得出第一批和第二批的进价,从而求出利润表达式,然后列不等式解答即可【详解】(1)设该商家购进的第一批衬衫是件,则第二批衬衫是件,由题意可得:,解得,经检验是原方程的根(2)设每件衬衫的标价至少是元,由(1)得第一批的进价为:(元/件),第二批的进价为:(元)由题意可得:解得:,所以,即每件衬衫的标价至少是150元【考点】本题考查分式方程的应用,一元一次不等式的应用,正确找出等量关系和不等关系是解题关键3、(1);(2)【解析】【分析】(1)分式的约分计算,注意约分结果应为最简分式;(2)分式的约分,先将分子分母的多项式进行因式分解,然后再进行约分【详解】解:(1)(2)
14、【考点】本题考查分式的约分,掌握运算法则准确计算是解题关键4、,-2【解析】【分析】先根据分式的运算法则把所给代数式化简,再从1,2,3中选取一个使分式有意义的数代入计算即可【详解】=,当x=2时,原式=故答案为:-2【考点】本题考查了分式的混合运算,熟练掌握分式的运算法则是解答本题的关键分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的;最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式5、2【解析】【分析】根据题意可得,解方程组可得a,b,再代入求值.【详解】解:,解得,3ab=64=2故3ab的值是2【考点】本题考核知识点:分式性质,非负数性质.解题关键点:理解分式性质和非负数性质.