1、二、填空题:1.(2011年高考辽宁卷理科15)一个正三棱柱的侧棱长和底面边长相等,体积为,它的三视图中的俯视图如右图所示,左视图是一个矩形,则这个矩形的面积是_.2. (2011年高考全国新课标卷理科15)已知矩形的顶点都在半径为4的球的球面上,且,则棱锥的体积为 。答案: 解析:如图,连接矩形对角线的交点和球心,则,,四棱锥的高为,所以,体积为点评:本题考查多面体和旋转体的有关概念和性质以及体积的计算。关键是确定棱锥高的大小,正确运用公式求解。3(2011年高考天津卷理科10)一个几何体的三视图如图所示(单位:),则这个几何体的体积为_ 4. (2011年高考四川卷理科15)如图,半径为R
2、的球O中有一内接圆柱.当圆柱的侧面积最大时,求球的表面积与该圆柱的侧面积之差是 . 5.(2011年高考全国卷理科16)己知点E、F分别在正方体ABCD-A1B2C3D4的棱BB1 、CC1上,且B1E=2EB, CF=2FC1,则面AEF与面ABC所成的二面角的正切值等于 .的平面角.设=,因为ACB=,=,CO=,连结FO,容易证得FOEA且,所以,所以OH=,所以在中,tanCHO=,故CHO=,所以二面角-的大小为.2.(2011年高考浙江卷理科20)(本题满分15分)如图,在三棱锥中,D为BC的中点,PO平面ABC,垂足O落在线段AD上,已知BC=8,PO=4,AO=3,OD=2()
3、证明:APBC;()在线段AP上是否存在点M,使得二面角A-MC-为直二面角?若存在,求出AM的长;若不存在,请说明理由。得可取,由得解得 ,故 综上所述,存在点M 符合题意,3.(2011年高考辽宁卷理科18)(本小题满分12分)如图,四边形ABCD为正方形,PD平面ABCD,PDQA,QA=AB=PD.(I)证明:平面PQC平面DCQ(II)求二面角Q-BP-C的余弦值. 即,.故平面DCQ,又平面PQC,所以平面PQC平面DCQ.4.(2011年高考安徽卷理科17)(本小题满分12分)如图,为多面体,平面与平面垂直,点在线段上,,,都是正三角形。()证明直线;(II)求棱锥F-OBED的
4、体积。【命题意图】:本题考查空间直线与直线,直线与平面,平面与平面的位置关系,空间直线平行的证明,多面体体积的计算,考查空间想象能力,推理论证能力和运算求解能力。(1)【证法一】: 同理可证, 【解题指导】:空间线线、线面、面面位置关系的证明方法,一是要从其上位或下位证明,本题的第一问方法一,是从其上位先证明面面平行,再借助面面平行的性质得到线面平行,再借助线面平行的性质得到线线平行;二是借助中位线定理等直接得到;三是借助空间向量直接证明。求不规则的几何体体积或表面积,通常采用分割或补齐成规则几何体即可。求解过程要坚持“一找二证三求”的顺序和原则防止出错。5. (2011年高考全国新课标卷理科18) (本小题满分12分)如图,四棱锥PABCD中,底面ABCD为平行四边形,DAB=60,AB=2AD,PD底面ABCD.()证明:PABD;()若PD=AD,求二面角A-PB-C的余弦值。分析:(1)要证明线线垂直只要证明线面垂直或者用向量去证明;(2)求二面角的余弦只需建立适当的坐标系,有空间向量来完成。6. (2011年高考天津卷理科17)(本小题满分13分)如图,在三棱柱中,是正方形的中心,平面,且()求异面直线AC与A1B1所成角的余弦值;()求二面角的正弦值;()设为棱的中点,点在平面内,且平面,求线段的长所以二面角的正弦值为.()由N为棱的中点,得,设,则,