收藏 分享(赏)

2022-2023学年度人教版九年级数学上册第二十四章圆专题测评试题.docx

上传人:a**** 文档编号:641508 上传时间:2025-12-12 格式:DOCX 页数:31 大小:596.02KB
下载 相关 举报
2022-2023学年度人教版九年级数学上册第二十四章圆专题测评试题.docx_第1页
第1页 / 共31页
2022-2023学年度人教版九年级数学上册第二十四章圆专题测评试题.docx_第2页
第2页 / 共31页
2022-2023学年度人教版九年级数学上册第二十四章圆专题测评试题.docx_第3页
第3页 / 共31页
2022-2023学年度人教版九年级数学上册第二十四章圆专题测评试题.docx_第4页
第4页 / 共31页
2022-2023学年度人教版九年级数学上册第二十四章圆专题测评试题.docx_第5页
第5页 / 共31页
2022-2023学年度人教版九年级数学上册第二十四章圆专题测评试题.docx_第6页
第6页 / 共31页
2022-2023学年度人教版九年级数学上册第二十四章圆专题测评试题.docx_第7页
第7页 / 共31页
2022-2023学年度人教版九年级数学上册第二十四章圆专题测评试题.docx_第8页
第8页 / 共31页
2022-2023学年度人教版九年级数学上册第二十四章圆专题测评试题.docx_第9页
第9页 / 共31页
2022-2023学年度人教版九年级数学上册第二十四章圆专题测评试题.docx_第10页
第10页 / 共31页
2022-2023学年度人教版九年级数学上册第二十四章圆专题测评试题.docx_第11页
第11页 / 共31页
2022-2023学年度人教版九年级数学上册第二十四章圆专题测评试题.docx_第12页
第12页 / 共31页
2022-2023学年度人教版九年级数学上册第二十四章圆专题测评试题.docx_第13页
第13页 / 共31页
2022-2023学年度人教版九年级数学上册第二十四章圆专题测评试题.docx_第14页
第14页 / 共31页
2022-2023学年度人教版九年级数学上册第二十四章圆专题测评试题.docx_第15页
第15页 / 共31页
2022-2023学年度人教版九年级数学上册第二十四章圆专题测评试题.docx_第16页
第16页 / 共31页
2022-2023学年度人教版九年级数学上册第二十四章圆专题测评试题.docx_第17页
第17页 / 共31页
2022-2023学年度人教版九年级数学上册第二十四章圆专题测评试题.docx_第18页
第18页 / 共31页
2022-2023学年度人教版九年级数学上册第二十四章圆专题测评试题.docx_第19页
第19页 / 共31页
2022-2023学年度人教版九年级数学上册第二十四章圆专题测评试题.docx_第20页
第20页 / 共31页
2022-2023学年度人教版九年级数学上册第二十四章圆专题测评试题.docx_第21页
第21页 / 共31页
2022-2023学年度人教版九年级数学上册第二十四章圆专题测评试题.docx_第22页
第22页 / 共31页
2022-2023学年度人教版九年级数学上册第二十四章圆专题测评试题.docx_第23页
第23页 / 共31页
2022-2023学年度人教版九年级数学上册第二十四章圆专题测评试题.docx_第24页
第24页 / 共31页
2022-2023学年度人教版九年级数学上册第二十四章圆专题测评试题.docx_第25页
第25页 / 共31页
2022-2023学年度人教版九年级数学上册第二十四章圆专题测评试题.docx_第26页
第26页 / 共31页
2022-2023学年度人教版九年级数学上册第二十四章圆专题测评试题.docx_第27页
第27页 / 共31页
2022-2023学年度人教版九年级数学上册第二十四章圆专题测评试题.docx_第28页
第28页 / 共31页
2022-2023学年度人教版九年级数学上册第二十四章圆专题测评试题.docx_第29页
第29页 / 共31页
2022-2023学年度人教版九年级数学上册第二十四章圆专题测评试题.docx_第30页
第30页 / 共31页
2022-2023学年度人教版九年级数学上册第二十四章圆专题测评试题.docx_第31页
第31页 / 共31页
亲,该文档总共31页,全部预览完了,如果喜欢就下载吧!
资源描述

1、人教版九年级数学上册第二十四章圆专题测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列说法正确的是()近似数精确到十分位;在,中,最小的是;如图所示,在数轴上点所表示的数为;用反证法证明命题“一个三

2、角形最多有一个钝角”时,首先应假设“这个三角形中有两个钝角”;如图,在内一点到这三条边的距离相等,则点是三个角平分线的交点A1B2C3D42、如图,矩形中,分别是,边上的动点,以为直径的与交于点,则的最大值为()A48B45C42D403、如图,、为O的切线,切点分别为A、B,交于点C,的延长线交O于点D下列结论不一定成立的是()A为等腰三角形B与相互垂直平分C点A、B都在以为直径的圆上D为的边上的中线4、下列说法中,正确的是()A长度相等的弧是等弧B平分弦的直径垂直于弦,并且平分弦所对的两条弧C经过半径并且垂直于这条半径的直线是圆的切线D在同圆或等圆中90的圆周角所对的弦是这个圆的直径5、如

3、图,在ABCD中,为的直径,O和相切于点E,和相交于点F,已知,则的长为()ABCD26、一个点到圆的最大距离为11 cm,最小距离为5 cm,则圆的半径为()A16cm或6 cmB3cm或8 cmC3 cmD8 cm7、已知一个三角形的三边长分别为5、7、8,则其内切圆的半径为()ABCD8、如图所示,矩形纸片中,把它分割成正方形纸片和矩形纸片后,分别裁出扇形和半径最大的圆,恰好能作为一个圆锥的侧面和底面,则的长为()ABCD9、如图,、分别切于点、,点为优弧上一点,若,则的度数为()ABCD10、下列说法:(1)长度相等的弧是等弧;(2)弦不包括直径;(3)劣弧一定比优弧短;(4)直径是圆

4、中最长的弦其中正确的有()A1个B2个C3个D4个第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,已知的半径为2,内接于,则_2、圆锥形冰淇淋的母线长是12cm,侧面积是60cm2,则底面圆的半径长等于_3、在O中,若弦垂直平分半径,则弦所对的圆周角等于_4、如图,A、B、C、D为一个正多边形的相邻四个顶点,O为正多边形的中心,若ADB=12,则这个正多边形的边数为_5、如图所示,AB、AC为O的两条弦,延长CA到点D,AD=AB,若ADB=35,则BOC=_三、解答题(5小题,每小题10分,共计50分)1、如图,在RtABC中,ACB90,BAC的平分线交BC于

5、点O,OC1,以点O为圆心OC为半径作半圆(1)求证:AB为O的切线;(2)如果tanCAO,求cosB的值2、如图,AB、CD是O中两条互相垂直的弦,垂足为点E,且AECE,点F是BC的中点,延长FE交AD于点G,已知AE1,BE3,OE(1)求证:AEDCEB;(2)求证:FGAD;(3)若一条直线l到圆心O的距离d,试判断直线l是否是圆O的切线,并说明理由3、已知抛物线经过点(m,4),交x轴于A,B两点(A在B左边),交y轴于C点对于任意实数n,不等式恒成立(1)抛物线解析式;(2)在BC上方的抛物线对称轴上是否存在点D,使得BDC2BAC,若有求出点D的坐标,若没有,请说明理由;(3

6、)将抛物线沿x轴正方向平移一个单位,把得到的图象在x轴下方的部分沿x轴向上翻折,图的其余部分保持不变,得到一个新的图象G,若直线y=x+b与新图象G有四个交点,求b的取值范围(直接写出结果即可)4、如图,在中,以为直径的O与相交于点,过点作O的切线交于点(1)求证:;(2)若O的半径为,求的长5、问题探究(1)在中,分别是与的平分线若,如图,试证明;将中的条件“”去掉,其他条件不变,如图,问中的结论是否成立?并说明理由迁移运用(2)若四边形是圆的内接四边形,且,如图,试探究线段,之间的等量关系,并证明-参考答案-一、单选题1、B【解析】【分析】根据近似数的精确度定义,可判断;根据实数的大小比较

7、,可判断;根据点在数轴上所对应的实数,即可判断;根据反证法的概念,可判断;根据角平分线的性质,可判断【详解】近似数精确到十位,故本小题错误;,最小的是,故本小题正确;在数轴上点所表示的数为,故本小题错误;用反证法证明命题“一个三角形最多有一个钝角”时,首先应假设“这个三角形中有两个钝角或三个钝角”,故本小题错误;在内一点到这三条边的距离相等,则点是三个角平分线的交点,故本小题正确故选B【考点】本题主要考查近似数的精确度定义,实数的大小比较,点在数轴上所对应的实数,反证法的概念,角平分线的性质,熟练掌握上述知识点,是解题的关键2、A【解析】【分析】过A点作AHBD于H,连接OM,如图,先利用勾股

8、定理计算出BD=75,则利用面积法可计算出AH=36,再证明点O在AH上时,OH最短,此时HM有最大值,最大值为24,然后根据垂径定理可判断MN的最大值【详解】解:过A点作AHBD于H,连接OM,如图,在RtABD中,BD=,AHBD=ADAB,AH=36,O的半径为26,点O在AH上时,OH最短,HM=,此时HM有最大值,最大值为:24,OHMN,MN=2MH,MN的最大值为224=48故选:A【考点】本题考查了垂径定理:直于弦的直径平分这条弦,并且平分弦所对的两条弧也考查了矩形的性质和勾股定理3、B【解析】【分析】连接OB,OC,令M为OP中点,连接MA,MB,证明RtOPBRtOPA,可

9、得BP=AP,OPB=OPA,BOC=AOC,可推出为等腰三角形,可判断A;根据OBP与OAP为直角三角形,OP为斜边,可得PM=OM=BM=AM,可判断C;证明OBCOAC,可得PCAB,根据BPA为等腰三角形,可判断D;无法证明与相互垂直平分,即可得出答案【详解】解:连接OB,OC,令M为OP中点,连接MA,MB,B,C为切点,OBP=OAP=90,OA=OB,OP=OP,RtOPBRtOPA,BP=AP,OPB=OPA,BOC=AOC,为等腰三角形,故A正确;OBP与OAP为直角三角形,OP为斜边,PM=OM=BM=AM点A、B都在以为直径的圆上,故C正确;BOC=AOC,OB=OA,O

10、C=OC,OBCOAC,OCB=OCA=90,PCAB,BPA为等腰三角形,为的边上的中线,故D正确;无法证明与相互垂直平分,故选:B【考点】本题考查了全等三角形的判定与性质,等腰三角形的判定与性质,圆的性质,掌握知识点灵活运用是解题关键4、D【解析】【分析】根据切线的判定,圆的知识,可得答案【详解】解:A、在等圆或同圆中,长度相等的弧是等弧,故A错误;B、平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧,故B错误;C、经过半径的外端并且垂直于这条半径的直线是圆的切线,故C错误;D、在同圆或等圆中90的圆周角所对的弦是这个圆的直径,故D正确;故选D【考点】本题考查了切线的判定及圆的知识

11、,利用圆的知识及切线的判定是解题关键5、C【解析】【分析】首先求出圆心角EOF的度数,再根据弧长公式,即可解决问题【详解】解:如图连接OE、OF,CD是O的切线,OECD,OED=90,四边形ABCD是平行四边形,C=60,A=C=60,D=120,OA=OF,A=OFA=60,DFO=120,EOF=360-D-DFO-DEO=30,的长故选:C【考点】本题考查切线的性质、平行四边形的性质、弧长公式等知识,解题的关键是求出圆心角的度数,记住弧长公式6、B【解析】【分析】最大距离与最小距离的和是直径;当点P在圆外时,点到圆的最大距离与最小距离的差是直径,由此得解【详解】当点P在圆内时,最近点的

12、距离为5cm,最远点的距离为11cm,则直径是16cm,因而半径是8cm;当点P在圆外时,最近点的距离为5cm,最远点的距离为11cm,则直径是6cm,因而半径是3cm;故选B【考点】本题考查了点与圆的位置关系,利用线段的和差得出直径是解题关键,分类讨论,以防遗漏7、C【解析】【分析】先依据题意画出图形,如图(见解析),过点A作于D,利用勾股定理可求出AD的长,再根据三角形内切圆的性质、三角形的面积公式即可得出答案【详解】解:如图,内切圆O的半径为,切点为,则过点A作于D,设,则由勾股定理得:则,即解得,即又即解得则内切圆的半径为故选:C【考点】本题考查了三角形内切圆的性质、勾股定理等知识点,

13、读懂题意,正确画出图形,并求出AD的长是解题关键8、B【解析】【分析】设AB=xcm,则DE=(6-x)cm,根据扇形的弧长等于圆锥底面圆的周长列出方程,求解即可【详解】设,则DE=(6-x)cm,由题意,得,解得. 故选B【考点】本题考查了圆锥的计算,矩形的性质,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长9、C【解析】【分析】要求ACB的度数,只需根据圆周角定理构造它所对的弧所对的圆心角,即连接OA,OB;再根据切线的性质以及四边形的内角和定理即可求解【详解】解:连接OA,OB,PA、PB分别切O于点A、B,OA

14、AP,OBBP,PAO=PBO=90,AOB+APB=180,AOB=2ACB,ACB=APB,3ACB=180,ACB=60,故选:C【考点】此题考查了切线的性质,圆周角定理,以及四边形的内角和,熟练掌握切线的性质是解本题的关键10、A【解析】【分析】根据等弧的定义、弦的定义、弧的定义、分别判断后即可确定正确的选项【详解】解:(1)长度相等的弧不一定是等弧,弧的度数必须相同,故错误;(2)直径是圆中最长的弦,故(2)错误,(4)正确;(3)同圆或等圆中劣弧一定比优弧短,故错误;正确的只有一个,故选:A【考点】本题考查了圆的有关定义,能够了解圆的有关知识是解答本题的关键,难度不大二、填空题1、

15、【解析】【详解】分析:根据圆内接四边形对边互补和同弧所对的圆心角是圆周角的二倍,可以求得AOB的度数,然后根据勾股定理即可求得AB的长详解:连接AD、AE、OA、OB,O的半径为2,ABC内接于O,ACB=135,ADB=45,AOB=90,OA=OB=2,AB=2,故答案为2点睛:本题考查三角形的外接圆和外心,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答2、5cm.【解析】【分析】设圆锥的底面圆的半径长为rcm,根据圆锥的侧面积公式计算即可.【详解】解:设圆锥的底面圆的半径长为rcm则2r1260,解得:r5(cm),故答案为5cm【考点】圆锥的侧面积公式是本题的

16、考点,牢记其公式是解题的关键.3、120或60【解析】【分析】根据弦垂直平分半径及OB=OC证明四边形OBAC是矩形,再根据OB=OA,OE=求出BOE=60,即可求出答案.【详解】设弦垂直平分半径于点E,连接OB、OC、AB、AC,且在优弧BC上取点F,连接BF、CF,OB=AB,OC=AC,OB=OC,四边形OBAC是菱形,BOC=2BOE,OB=OA,OE=,cosBOE=,BOE=60,BOC=BAC=120,BFC=BOC=60, 弦所对的圆周角为120或60,故答案为:120或60.【考点】此题考查圆的基本知识点:圆的垂径定理,同圆的半径相等的性质,圆周角定理,菱形的判定定理及性质

17、定理,锐角三角函数,熟练掌握圆的各性质定理是解题的关键.4、15【解析】【分析】连接AO,BO,根据圆周角定理得到AOB=24,根据中心角的定义即可求解【详解】如图,连接AO,BO,AOB=2ADB=24这个正多边形的边数为=15故答案为:15【考点】此题主要考查正多边形的性质,解题的关键是熟知圆周角定理5、140【解析】【分析】在等腰中,根据三角形的外角性质可求出外角的度数;而是同弧所对的圆周角和圆心角,可根据圆周角和圆心角的关系求出的度数【详解】ABD中,AB=AD,则: 故答案为【考点】考查圆周角定理,在同圆或等圆中,同弧或等弧所对的圆周角等于圆心角的一半.三、解答题1、(1)证明见解析

18、(2)【解析】【详解】(1)证明:作OMAB于M,OA平分CAB,OCAC,OMAB,OCOMAB是O的切线(2)设BMx,OBy,则y2x21tanCAO ,ACAM3cosB , x23xy2y由可得y3x1,(3x1)2x21x ,y cosB 2、(1)见解析;(2)见解析;(3)直线l是圆O的切线,理由见解析【解析】【分析】(1)由圆周角定理得AC,由ASA得出AEDCEB;(2)由直角三角形斜边上的中线性质得EFBCBF,由等腰三角形的性质得FEBB,由圆周角定理和对顶角相等证出AAEG90,进而得出结论;(3)作OHAB于H,连接OB,由垂径定理得出AHBHAB2,则EHAHAE

19、1,由勾股定理求出OH1,OB,由一条直线l到圆心O的距离d等于O的半径,即可得出结论【详解】(1)证明:由圆周角定理得:AC,在AED和CEB中,AEDCEB(ASA);(2)证明:ABCD,AEDCEB90,C+B90,点F是BC的中点,EFBCBF,FEBB,AC,AEGFEBB,A+AEGC+B90,AGE90,FGAD;(3)解:直线l是圆O的切线,理由如下:作OHAB于H,连接OB,如图所示:AE1,BE3,ABAE+BE4,OHAB,AHBHAB2,EHAHAE1,OH1,OB,即O的半径为,一条直线l到圆心O的距离dO的半径,直线l是圆O的切线【考点】本题是圆的综合题目,考查了

20、圆周角定理、垂径定理、切线的判定、全等三角形的判定、直角三角形斜边上的中线性质、等腰三角形的性质、勾股定理等知识;本题综合性强,熟练掌握圆周角定理和垂径定理是解题的关键3、10参考答案:1(1);(2)点D的坐标为(1,1);(3)【解析】【分析】(1)由不等式恒成立可得点(m,4)是抛物线的顶点坐标,求出,将点(t,4)代入求出t的值即可;(2)作线段BC的垂直平分线交对称轴于点D,交BC于E,则点D是ABC的外心,可得BDC2BAC,然后求出直线BC,直线DE的解析式即可解决问题;(3)作出图象G,求出直线y=x+b与图象G有三个交点时b的值,则根据图象可得直线y=x+b与图象G有四个交点

21、时b的取值范围(1)解:抛物线的对称轴为,不等式恒成立,抛物线的顶点坐标为(m,4),将点(t,4)代入得:,解得:(舍去),抛物线解析式为:;(2)解:令,解得:,A(1,0),B(3,0),由可得C(0,3),对称轴为,作线段BC的垂直平分线交对称轴于点D,交BC于E,E(,),抛物线对称轴是线段AB的垂直平分线,点D是ABC的外心,BDC2BAC,设直线BC的解析式为,代入B(3,0),C(0,3)得,解得:,直线BC的解析式为,设直线DE的解析式为,代入E(,)得,m0,直线DE的解析式为,当时,点D的坐标为(1,1);(3)解:图象G如图所示,由平移可知图象G过点(0,0),当直线y

22、=x+b过点(0,0)时,b0,将抛物线沿x轴正方向平移一个单位后解析式为,沿x轴向上翻折后解析式为,由,得,整理得:,令,解得:,故若直线y=x+b与新图象G有四个交点,b的取值范围为:【考点】本题考查了待定系数法的应用,二次函数的图象和性质,一次函数的图象和性质,三角形外心的性质,二次函数图象的平移及翻转等知识,熟练掌握数形结合思想的应用是解题的关键4、(1)见详解;(2)4.8【解析】【分析】(1)连接OD,由AB=AC,OB=OD,则B=ODB=C,则ODAC,由DE为切线,即可得到结论成立;(2)连接AD,则有ADBC,得到BD=CD=8,求出AD=6,利用三角形的面积公式,即可求出

23、DE的长度【详解】解:连接OD,如图:AB=AC,B=C,OB=OD,B=ODB,B=ODB=C,ODAC,DE是切线,ODDE,ACDE;(2)连接AD,如(1)图,AB为直径,AB=AC,AD是等腰三角形ABC的高,也是中线,CD=BD=,ADC=90,AB=AC=,由勾股定理,得:,;【考点】本题主要考查的是切线的性质、等腰三角形的性质、平行线的性质、勾股定理,解题的关键是熟练掌握所学的性质定理,正确的求出边的长度5、(1)见解析;结论成立,见解析;(2),见解析【解析】【分析】(1)证明是等边三角形,得出E、D为中点,从而证明;在上截取,根据角平分线的性质,证明,从而得到答案;(2)作点B关于的对称点E,证明,从而得到,再根据AE、DC分别是、的角平分线,得到【详解】(1),又、分别是、的平分线点D、E分别是、的中点,结论成立,理由如下:设与交于点F,由条件,得,又在上截取由BF=BF,又CF=CF,(2),理由如下:四边形是圆内接四边形,作点B关于的对称点E,连结,的延长线与的延长线交于点M,与交于点F,AE、DC分别是、的角平分线由得【考点】本题考查三角形、等边三角形、全等三角形、圆的内接四边形的性质,解题的关键是熟练掌握三角形、等边三角形、全等三角形、圆的内接四边形的相关知识

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 语文

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1