收藏 分享(赏)

2022-2023学年度人教版九年级数学上册第二十四章圆专项测试试卷(含答案详解版).docx

上传人:a**** 文档编号:641454 上传时间:2025-12-12 格式:DOCX 页数:24 大小:368.52KB
下载 相关 举报
2022-2023学年度人教版九年级数学上册第二十四章圆专项测试试卷(含答案详解版).docx_第1页
第1页 / 共24页
2022-2023学年度人教版九年级数学上册第二十四章圆专项测试试卷(含答案详解版).docx_第2页
第2页 / 共24页
2022-2023学年度人教版九年级数学上册第二十四章圆专项测试试卷(含答案详解版).docx_第3页
第3页 / 共24页
2022-2023学年度人教版九年级数学上册第二十四章圆专项测试试卷(含答案详解版).docx_第4页
第4页 / 共24页
2022-2023学年度人教版九年级数学上册第二十四章圆专项测试试卷(含答案详解版).docx_第5页
第5页 / 共24页
2022-2023学年度人教版九年级数学上册第二十四章圆专项测试试卷(含答案详解版).docx_第6页
第6页 / 共24页
2022-2023学年度人教版九年级数学上册第二十四章圆专项测试试卷(含答案详解版).docx_第7页
第7页 / 共24页
2022-2023学年度人教版九年级数学上册第二十四章圆专项测试试卷(含答案详解版).docx_第8页
第8页 / 共24页
2022-2023学年度人教版九年级数学上册第二十四章圆专项测试试卷(含答案详解版).docx_第9页
第9页 / 共24页
2022-2023学年度人教版九年级数学上册第二十四章圆专项测试试卷(含答案详解版).docx_第10页
第10页 / 共24页
2022-2023学年度人教版九年级数学上册第二十四章圆专项测试试卷(含答案详解版).docx_第11页
第11页 / 共24页
2022-2023学年度人教版九年级数学上册第二十四章圆专项测试试卷(含答案详解版).docx_第12页
第12页 / 共24页
2022-2023学年度人教版九年级数学上册第二十四章圆专项测试试卷(含答案详解版).docx_第13页
第13页 / 共24页
2022-2023学年度人教版九年级数学上册第二十四章圆专项测试试卷(含答案详解版).docx_第14页
第14页 / 共24页
2022-2023学年度人教版九年级数学上册第二十四章圆专项测试试卷(含答案详解版).docx_第15页
第15页 / 共24页
2022-2023学年度人教版九年级数学上册第二十四章圆专项测试试卷(含答案详解版).docx_第16页
第16页 / 共24页
2022-2023学年度人教版九年级数学上册第二十四章圆专项测试试卷(含答案详解版).docx_第17页
第17页 / 共24页
2022-2023学年度人教版九年级数学上册第二十四章圆专项测试试卷(含答案详解版).docx_第18页
第18页 / 共24页
2022-2023学年度人教版九年级数学上册第二十四章圆专项测试试卷(含答案详解版).docx_第19页
第19页 / 共24页
2022-2023学年度人教版九年级数学上册第二十四章圆专项测试试卷(含答案详解版).docx_第20页
第20页 / 共24页
2022-2023学年度人教版九年级数学上册第二十四章圆专项测试试卷(含答案详解版).docx_第21页
第21页 / 共24页
2022-2023学年度人教版九年级数学上册第二十四章圆专项测试试卷(含答案详解版).docx_第22页
第22页 / 共24页
2022-2023学年度人教版九年级数学上册第二十四章圆专项测试试卷(含答案详解版).docx_第23页
第23页 / 共24页
2022-2023学年度人教版九年级数学上册第二十四章圆专项测试试卷(含答案详解版).docx_第24页
第24页 / 共24页
亲,该文档总共24页,全部预览完了,如果喜欢就下载吧!
资源描述

1、人教版九年级数学上册第二十四章圆专项测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、有一个圆的半径为5,则该圆的弦长不可能是()A1B4C10D112、如图,O中,弦ABCD,垂足为E,F为的中点,连

2、接AF、BF、AC,AF交CD于M,过F作FHAC,垂足为G,以下结论:;HCBF:MFFC:,其中成立的个数是()A1个B2个C3个D4个3、已知一个三角形的三边长分别为5、7、8,则其内切圆的半径为()ABCD4、已知扇形的半径为6,圆心角为则它的面积是()ABCD5、如图,、为的切线,、为切点,点为弧上一点,过点作的切线分别交、于、,若,则的周长等于()ABCD6、如图,点在上,则()ABCD7、在O中按如下步骤作图:(1)作O的直径AD;(2)以点D为圆心,DO长为半径画弧,交O于B,C两点;(3)连接DB,DC,AB,AC,BC根据以上作图过程及所作图形,下列四个结论中错误的是()A

3、ABD90BBADCBDCADBCDAC2CD8、如图,AB是O的直径,C,D是O上位于AB异侧的两点下列四个角中,一定与ACD互余的角是()AADCBABDCBACDBAD9、下列图形为正多边形的是()ABCD10、如图,O的半径为5cm,直线l到点O的距离OM=3cm,点A在l上,AM=3.8cm,则点A与O的位置关系是()A在O内B在O上C在O外D以上都有可能第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,圆锥的母线长为10cm,高为8cm,则该圆锥的侧面展开图(扇形)的弧长为_cm(结果用表示)2、如图,已知点C是O的直径AB上的一点,过点C作弦DE,使C

4、D=CO若AD的度数为35,则的度数是_3、如图,是的外接圆的直径,若,则_4、如图,把一个圆锥沿母线OA剪开,展开后得到扇形AOC,已知圆锥的高h为12cm,OA=13cm,则扇形AOC中的长是_cm(计算结果保留)5、若O的半径为6cm,则O中最长的弦为_厘米三、解答题(5小题,每小题10分,共计50分)1、已知:A、B、C、D是O上的四个点,且,求证:AC=BD2、已知:如图,ABC中,ABAC,ABBC求作:线段BD,使得点D在线段AC上,且CBDBAC作法:以点A为圆心,AB长为半径画圆;以点C为圆心,BC长为半径画弧,交A于点P(不与点B重合);连接BP交AC于点D线段BD就是所求

5、作的线段(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明证明:连接PCABAC,点C在A上点P在A上,CPBBAC( )(填推理的依据)BCPC,CBD ( )(填推理的依据)CBDBAC3、如图,在直角梯形ABCD中,ADBC,ABC=90,AB=12cm,AD=8cm,BC=22cm,AB为O的直径,动点P从点A开始沿AD边向点D以1cm/s的速度运动,动点Q从点C开始沿CB边向点B以2cm/s的速度运动P、Q分别从点A、C同时出发,当其中一个动点到达端点时,另一个动点也随之停止运动,设运动时间为t(s)(1)当t为何值时,四边形PQCD为平行四边形?(2)当t为

6、何值时,PQ与O相切?4、如图,四边形ABCD是平行四边形,点A,B,D均在圆上请仅用无刻度的直尺分别下列要求画图(1)在图中,若AB是直径,CD与圆相切,画出圆心;(2)在图中,若CB,CD均与圆相切,画出圆心5、如图,已知等边ABC内接于O,BD为内接正十二边形的一边,CD=5 cm,求O的半径R.-参考答案-一、单选题1、D【解析】【分析】根据圆的半径为5,可得到圆的最大弦长为10,即可求解【详解】半径为5,直径为10,最长弦长为10,则不可能是11故选:D【考点】本题主要考查了圆的基本性质,理解圆的直径是圆的最长的弦是解题的关键2、C【解析】【分析】根据弧,弦,圆心角之间的关系,圆周角

7、定理以及三角形内角和定理一一判断即可【详解】解:F为的中点,故正确,FCMFAC,FCGACM+FCM,AMEFMCACM+FAC,AMEFMCFCGFCM,FCFM,故错误,ABCD,FHAC,AEMCGF90,CFH+FCG90,BAF+AME90,CFHBAF,HCBF,故正确,AGF90,CAF+AFH90,180,180,故正确,故选:C【点评】本题考查圆心角,弧,弦之间的关系,三角形内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考选择题中的压轴题3、C【解析】【分析】先依据题意画出图形,如图(见解析),过点A作于D,利用勾股定理可求出AD的长,再根据三角形内切圆的性质、三角

8、形的面积公式即可得出答案【详解】解:如图,内切圆O的半径为,切点为,则过点A作于D,设,则由勾股定理得:则,即解得,即又即解得则内切圆的半径为故选:C【考点】本题考查了三角形内切圆的性质、勾股定理等知识点,读懂题意,正确画出图形,并求出AD的长是解题关键4、D【解析】【分析】已知扇形的半径和圆心角度数求扇形的面积,选择公式直接计算即可【详解】解:故选:D【考点】本题考查扇形面积公式的知识点,熟知扇形面积公式及适用条件是解题的关键5、B【解析】【分析】由切线长定理可得,然后根据线段之间的转化即可求得的周长【详解】、为的切线,所以,又为的切线,的周长故选:B【考点】此题考查了圆中切线长定理的运用,

9、解题的关键是熟练掌握切线长定理6、D【解析】【分析】先证明再利用等弧的性质及圆周角定理可得答案【详解】解: 点在上, 故选:【考点】本题考查的两条弧,两个圆心角,两条弦之间的关系,圆周角定理,等弧的概念与性质,掌握同弧或等弧的概念与性质是解题的关键7、D【解析】【分析】根据作图过程可知:AD是O的直径,根据垂径定理即可判断A、B、C正确,再根据DCOD,可得AD2CD,进而可判断D选项【详解】解:根据作图过程可知:AD是O的直径,ABD90,A选项正确;BDCD,,BADCBD,B选项正确;根据垂径定理,得ADBC,C选项正确;DCOD,AD2CD,D选项错误故选:D【考点】本题考查作图-复杂

10、作图、含30度角的直角三角形、垂径定理、圆周角定理,解决本题的关键是熟练掌握相关知识点8、D【解析】【分析】由圆周角定理得出ACBACD+BCD90,BCDBAD,得出ACD+BAD90,即可得出答案.【详解】解:连接BC,如图所示:AB是O的直径,ACBACD+BCD90,BCDBAD,ACD+BAD90,故选:D.【考点】此题考查了圆周角定理:同弧所对的圆周角相等,直径所对的圆周角是直角,正确掌握圆周角定理是解题的关键.9、D【解析】【分析】根据正多边形的定义:各个角都相等,各条边都相等的多边形叫做正多边形可得答案【详解】根据正多边形的定义,得到D中图形是正五边形故选D【考点】本题考查了正

11、多边形,关键是掌握正多边形的定义10、A【解析】【详解】如图,连接OA,则在直角OMA中,根据勾股定理得到OA=点A与O的位置关系是:点A在O内 故选A 二、填空题1、【解析】【分析】先求出圆锥的底面半径,然后根据圆锥的展开图为扇形,结合圆周长公式进行求解即可【详解】设底面圆的半径为rcm,由勾股定理得:r=6,2r=26=12,故答案为12【考点】本题考查了圆锥的计算,解答本题的关键是掌握圆锥侧面展开图是个扇形,要熟练掌握扇形与圆锥之间的联系2、105【解析】【分析】连接OD、OE,根据圆心角、弧、弦的关系定理求出AOD=35,根据等腰三角形的性质和三角形内角和定理计算即可【详解】解:连接O

12、D、OE,的度数为35,AOD=35,CD=CO,ODC=AOD=35,OD=OE,ODC=E=35,DOE=180-ODC-E=180-35-35=110,AOE=DOE-AOD=110-35=75,BOE=180-AOE=180-75=105,的度数是105故答案为105【考点】本题考查了圆心角、弧、弦的关系定理:在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等3、【解析】【分析】连接BD,如图,根据圆周角定理得到ABD=90,则利用互余计算出D=50,然后再利用圆周角定理得到ACB的度数【详解】连接BD,如图,AD为ABC的外接圆O的直径,ABD=90,D=90-BAD=90-4

13、0=50,ACB=D=50故答案为:50【考点】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半4、10【解析】【分析】根据的长就是圆锥的底面周长即可求解【详解】解:圆锥的高h为12cm,OA=13cm,圆锥的底面半径为=5cm,圆锥的底面周长为10cm,扇形AOC中的长是10cm,故答案为10【考点】本题考查了圆锥的计算,解题的关键是了解圆锥的底面周长等于展开扇形的弧长5、12【解析】【详解】解:O的半径为6cm,O的直径为12cm,即圆中最长的弦长为12cm故答案为12三、解答题1、详见解析【解析】【分析】先根据可得,再根据同圆中等弧所对的弦

14、相等即得【详解】证明:【考点】本题考查圆心角定理推论,解题关键是熟知同圆或等圆中,等弧所对的弦相等2、(1)见解析;(2)圆周角定理;,圆周角定理的推论【解析】【分析】(1)利用几何语言画出对应的几何图形;(2)先根据圆周角定理得到,再利用等腰三角形的性质得到,从而得到【详解】解:(1)如图,为所作;(2)证明:连接,如图,点在上点在上,(圆周角定理),(圆周角定理的推论)故答案为:圆周角定理;圆周角定理的推论【考点】本题考查了作图复杂作图、也考查了圆周角定理,解题的关键是掌握复杂作图的五种基本作图的基本方法,一般是结合了几何图形的性质和基本作图方法熟悉基本几何图形的性质,结合几何图形的基本性

15、质把复杂作图拆解成基本作图,逐步操作3、(1)当时,四边形PQCD为平行四边形;(2)当t=2秒时,PQ与O相切【解析】【分析】(1)由题意得:,则,再由四边形PQCD是平行四边形,得到DP=CQ,由此建立方程求解即可;(2)设PQ与O相切于点H过点P作PEBC,垂足为E先证明四边形ABEP是矩形,得到PE=AB=12cm由AP=BE=tcm,CQ=2tcm,得到BQ =(222t)cm,EQ=223t)cm;再由切线长定理得到AP=PH,HQ=BQ,则PQ=PH+HQ=AP+BQ=t+222t=(22t)cm;在RtPEQ中,PE2+EQ2=PQ2,则122+(223t)2=(22t)2,即

16、:8t288t+144=0,由此求解即可【详解】解:(1)由题意得:,四边形PQCD是平行四边形,DP=CQ,解得,当时,四边形PQCD为平行四边形;(2)设PQ与O相切于点H过点P作PEBC,垂足为EPEB=90在直角梯形ABCD,ADBC,ABC=90,BAD=90,四边形ABEP是矩形,PE=AB=12cmAP=BE=tcm,CQ=2tcm,BQ=BCCQ=(222t)cm,EQ=BQBE=222tt=(223t)cm;AB为O的直径,ABC=DAB=90,AD、BC为O的切线,AP=PH,HQ=BQ,PQ=PH+HQ=AP+BQ=t+222t=(22t)cm;在RtPEQ中,PE2+E

17、Q2=PQ2,122+(223t)2=(22t)2,即:8t288t+144=0,t211t+18=0,(t2)(t9)=0,t1=2,t2=9;P在AD边运动的时间为秒t=98,t=9(舍去),当t=2秒时,PQ与O相切【考点】本题主要考查了切线长定理,矩形的性质与判定,勾股定理,平行四边形的性质等等,解题的关键在于能够熟练掌握切线长定理4、(1)见解析;(2)见解析【解析】【分析】(1)延长CB交圆于一点,把这点与点D连接,与AB交点即为圆心;(2)连接AC、BD交于点G,AC交圆于点E,射线DE交BC于F,射线FG交DA于H,连接BH交AC于O即可【详解】(1)如图1所示,延长CB交圆于

18、点E,连接DE,与AB交点即为圆心; 由已知可得A+DBA=90,EBA=C=A,故EBA +DBA=90,DE为直径;(2)如图2所示,连接AC、BD交于点G,AC交圆于点E,射线DE交BC于F,射线FG交DA于H,连接BH交AC于O点即为所求说明:由已知可得,ADB为等边三角形,由作图可知,AE为直径,DFBC,可得,F是BC中点,进而得出H是AD中点,BHAD,BH过圆心;【考点】本题考查了无刻度直尺作图,解题关键是准确理解题意,根据圆的有关性质进行作图5、5.【解析】【详解】试题分析:首先连接OB,OC,OD,由等边ABC内接于O,BD为内接正十二边形的一边,可求得BOC,BOD的度数,继而证得COD是等腰直角三角形,继而求得答案试题解析:连接OB、OC、OD.等边ABC内接于O,BD为内接正十二边形的一边,BOC360120,BOD36030.CODBOCBOD90.OCOD,OCD45.OCCDcos455 5(cm)O的半径R5 cm.【考点】本题考查了正多边形与圆以及等腰直角三角形性质,正确地添加辅助线是解题的关键,注意掌握数形结合思想的应用

展开阅读全文
相关资源
  • 专题6.22 相似三角形的性质(巩固篇)(专项练习)-2022-2023学年九年级数学下册基础知识专项讲练(苏科版).docx专题6.22 相似三角形的性质(巩固篇)(专项练习)-2022-2023学年九年级数学下册基础知识专项讲练(苏科版).docx
  • 专题6.22 反比例函数(折叠问题)(培优篇)(专项练习)-2022-2023学年八年级数学下册基础知识专项讲练(浙教版).docx专题6.22 反比例函数(折叠问题)(培优篇)(专项练习)-2022-2023学年八年级数学下册基础知识专项讲练(浙教版).docx
  • 专题6.22 一次函数与二元一次方程(知识梳理与考点分类讲解)-2023-2024学年八年级数学上册基础知识专项突破讲与练(苏科版).docx专题6.22 一次函数与二元一次方程(知识梳理与考点分类讲解)-2023-2024学年八年级数学上册基础知识专项突破讲与练(苏科版).docx
  • 专题6.22 《反比例函数》全章复习与巩固(巩固篇)(专项练习)-2022-2023学年九年级数学上册基础知识专项讲练(北师大版).docx专题6.22 《反比例函数》全章复习与巩固(巩固篇)(专项练习)-2022-2023学年九年级数学上册基础知识专项讲练(北师大版).docx
  • 专题6.21 相似三角形的性质(基础篇)(专项练习)-2022-2023学年九年级数学下册基础知识专项讲练(苏科版).docx专题6.21 相似三角形的性质(基础篇)(专项练习)-2022-2023学年九年级数学下册基础知识专项讲练(苏科版).docx
  • 专题6.21 反比例函数(折叠问题)(综合篇)(专项练习)-2022-2023学年八年级数学下册基础知识专项讲练(浙教版).docx专题6.21 反比例函数(折叠问题)(综合篇)(专项练习)-2022-2023学年八年级数学下册基础知识专项讲练(浙教版).docx
  • 专题6.21 《反比例函数》全章复习与巩固(基础篇)(专项练习)-2022-2023学年九年级数学上册基础知识专项讲练(北师大版).docx专题6.21 《反比例函数》全章复习与巩固(基础篇)(专项练习)-2022-2023学年九年级数学上册基础知识专项讲练(北师大版).docx
  • 专题6.20 相似三角形的性质(知识讲解)-2022-2023学年九年级数学下册基础知识专项讲练(苏科版).docx专题6.20 相似三角形的性质(知识讲解)-2022-2023学年九年级数学下册基础知识专项讲练(苏科版).docx
  • 专题6.20 反比例函数和一次函数综合(培优篇)(专项练习)-2022-2023学年八年级数学下册基础知识专项讲练(浙教版).docx专题6.20 反比例函数和一次函数综合(培优篇)(专项练习)-2022-2023学年八年级数学下册基础知识专项讲练(浙教版).docx
  • 专题6.20 《反比例函数》全章复习与巩固(知识讲解)-2022-2023学年九年级数学上册基础知识专项讲练(北师大版).docx专题6.20 《反比例函数》全章复习与巩固(知识讲解)-2022-2023学年九年级数学上册基础知识专项讲练(北师大版).docx
  • 猜你喜欢
    相关搜索

    当前位置:首页 > 语文

    Copyright@ 2020-2024 m.ketangku.com网站版权所有

    黑ICP备2024021605号-1