1、人教版九年级数学上册第二十二章二次函数定向攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、二次函数yax2+bx+c的部分图象如图所示,由图象可知该抛物线与x轴的交点坐标是()A(1,0)和(5,0)
2、B(1,0)和(5,0)C(0,1)和(0,5)D(0,1)和(0,5)2、已知二次函数(其中是自变量)的图象与轴没有公共点,且当时,随的增大而减小,则实数的取值范围是()ABCD3、抛物线y=(x2)21可以由抛物线y=x2平移而得到,下列平移正确的是()A先向左平移2个单位长度,然后向上平移1个单位长度B先向左平移2个单位长度,然后向下平移1个单位长度C先向右平移2个单位长度,然后向上平移1个单位长度D先向右平移2个单位长度,然后向下平移1个单位长度4、记某商品销售单价为x元,商家销售此种商品每月获得的销售利润为y元,且y是关于x的二次函数已知当商家将此种商品销售单价分别定为55元或75元
3、时,他每月均可获得销售利润1800元;当商家将此种商品销售单价定为80元时,他每月可获得销售利润1550元,则y与x的函数关系式是()Ay(x60)2+1825By2(x60)2+1850Cy(x65)2+1900Dy2(x65)2+20005、关于二次函数的最大值或最小值,下列说法正确的是()A有最大值4B有最小值4C有最大值6D有最小值66、如图,抛物线与抛物线交于点,且它们分别与轴交于点、过点作轴的平行线,分别与两抛物线交于点、,则以下结论:无论取何值,总是负数;抛物线可由抛物线向右平移3个单位,再向下平移3个单位得到;当时,随着的增大,的值先增大后减小;四边形为正方形其中正确的是()A
4、BCD7、在“探索函数的系数,与图象的关系”活动中,老师给出了直角坐标系中的四个点:,同学们探索了经过这四个点中的三个点的二次函数的图象,发现这些图象对应的函数表达式各不相同,其中的值最大为()ABCD8、若函数y(a1)x2+2x+a21是二次函数,则()Aa1Ba1Ca1Da19、向空中发射一枚炮弹,第秒时的高度为米,且高度与时间的关系为,若此炮弹在第秒与第秒时的高度相等,则在下列时间中炮弹所在高度最高的是( )A第秒B第秒C第秒D第秒10、二次函数的图象与一次函数在同一平面直角坐标系中的图象可能是()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在函数中
5、,当x1时,y随x的增大而 _(填“增大”或“减小”)2、如图1,E是等边的边BC上一点(不与点B,C重合),连接AE,以AE为边向右作等边,连接已知的面积(S)与BE的长(x)之间的函数关系如图2所示(为抛物线的顶点)(1)当的面积最大时,的大小为_ (2)等边的边长为_ 3、由于被墨水污染,一道数学题仅能见到如下文字:已知二次函数yax2+bx+c的图象过点(1,0),求证:这个二次函数的图象关于直线x=2对称,根据现有信息,得出有关这个二次函数的下列结论:过点(3,0);顶点(2,2);在x轴上截得的线段的长是2;与y轴的交点是(0,3),其中正确的是_(填序号)4、如图是二次函数 和一
6、次函数y2kx+t的图象,当y1y2时,x的取值范围是_5、如图,已知二次函数的图象经过点(1)的值为_,图象的顶点坐标为_;(2)若点在该二次函数图象上,且点到轴的距离小于,则的取值范围为_三、解答题(5小题,每小题10分,共计50分)1、某厂家生产一批遮阳伞,每个遮阳伞的成本价是20元,试销售时发现:遮阳伞每天的销售量y(个)与销售单价x(元)之间是一次函数关系,当销售单价为28元时,每天的销售量为260个;当销售单价为30元时,每天的销售量为240个(1)求遮阳伞每天的销出量y(个)与销售单价x(元)之间的函数关系式;(2)设遮阳伞每天的销售利润为w(元),当销售单价定为多少元时,才能使
7、每天的销售利润最大?最大利润是多少元?2、已知抛物线与x轴交于A,B两点,与y轴交于C点(1)求m的取值范围(2)若,直线经过点A并与y轴交于点D,且,求抛物线的解析式3、 “扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售量(件)与销售单价(元)之间存在一次函数关系,如图所示.(1)求与之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.
8、4、如果函数y=(m3)+mx+1是二次函数,求m的值5、已知抛物线C:yax24(m1)x3m26m2(1)当a1,m0时,求抛物线C与x轴的交点个数;(2)当m0时,判断抛物线C的顶点能否落在第四象限,并说明理由;(3)当m0时,过点(m,m22m2)的抛物线C中,将其中两条抛物线的顶点分别记为A,B,若点A,B的横坐标分别是t,t2,且点A在第三象限以线段AB为直径作圆,设该圆的面积为S,求S的取值范围-参考答案-一、单选题1、A【解析】【分析】首先根据图像得出抛物线的对称轴和其中一个交点坐标,然后根据二次函数的对称性即可求得另一个交点坐标【详解】解:由图像可得,抛物线的对称轴为,与x轴
9、的一个交点坐标为(5,0),抛物线与x轴的两个交点关于对称轴对称,抛物线与x轴的另一个交点坐标为(1,0),故选:A【考点】此题考查了二次函数与x轴的交点,二次函数的对称性,解题的关键是根据二次函数的对称性求出与x轴的另一个交点坐标2、D【解析】【分析】由抛物线与轴没有公共点,可得,求得,求出抛物线的对称轴为直线,抛物线开口向上,再结合已知当时,随的增大而减小,可得,据此即可求得答案.【详解】,抛物线与轴没有公共点,解得,抛物线的对称轴为直线 ,抛物线开口向上,而当时,随的增大而减小,实数的取值范围是,故选D【考点】本题考查了二次函数图象与x轴交点问题,抛物线的对称轴,二次函数图象的增减性,熟
10、练掌握和灵活运用相关知识是解题的关键.3、D【解析】【详解】分析:抛物线平移问题可以以平移前后两个解析式的顶点坐标为基准研究详解:抛物线y=x2顶点为(0,0),抛物线y=(x2)21的顶点为(2,1),则抛物线y=x2向右平移2个单位,向下平移1个单位得到抛物线y=(x2)21的图象故选D点睛:本题考查二次函数图象平移问题,解答时最简单方法是确定平移前后的抛物线顶点,从而确定平移方向4、D【解析】【分析】设二次函数的解析式为:yax2bxc,根据题意列方程组即可得到结论【详解】解:设二次函数的解析式为:yax2+bx+c,当x55,y1800,当x75,y1800,当x80时,y1550,
11、,解得a2,b260,c6450,y与x的函数关系式是y2x2+260x64502(x65)2+2000,故选:D【考点】本题考查了根据实际问题列二次函数关系式,正确的列方程组是解题的关键5、D【解析】【分析】根据二次函数的解析式,得到a的值为2,图象开口向上,函数有最小值,根据定点坐标(4,6),即可得出函数的最小值【详解】解:在二次函数中,a=20,顶点坐标为(4,6),函数有最小值为6故选:D【考点】本题主要考查了二次函数的最值问题,关键是根据二次函数的解析式确定a的符号和根据顶点坐标求出最值6、B【解析】【分析】根据非负数的相反数或者直接由图像判断即可;先求抛物线的解析式,再根据抛物线
12、的顶点坐标,判断平移方向和平移距离即可判断;先根据题意得出时,观察图像可知,然后计算,进而根据一次函数的性质即可判断;分别计算出的坐标,根据正方形的判定定理进行判断即可【详解】,无论取何值,总是负数,故正确;抛物线与抛物线交于点,即,解得,抛物线,抛物线的顶点,抛物线的顶点为,将向右平移3个单位,再向下平移3个单位即为,即将抛物线向右平移3个单位,再向下平移3个单位可得到抛物线,故正确;,将代入抛物线,解得,将代入抛物线,解得,从图像可知抛物线的图像在抛物线图像的上方,当,随着的增大,的值减小,故不正确;设与轴交于点,由可知,当时,即,四边形是平行四边形,四边形是正方形,故正确,综上所述,正确
13、的有,故选:B【考点】本题考查了二次函数图像与性质,一次函数的性质,平移,正方形的判定定理,解题的关键是综合运用以上知识7、A【解析】【分析】分四种情况讨论,利用待定系数法,求过,中的三个点的二次函数解析式,继而解题【详解】解:设过三个点,的抛物线解析式为:分别代入,得解得;设过三个点,的抛物线解析式为:分别代入,得解得;设过三个点,的抛物线解析式为:分别代入,得解得;设过三个点,的抛物线解析式为:分别代入,得解得;最大为,故选:A【考点】本题考查待定系数法求二次函数的解析式,是基础考点,难度较易,掌握相关知识是解题关键8、A【解析】【分析】利用二次函数定义进行解答即可【详解】解:由题意得:a
14、10,解得:a1,故选:A【考点】本题主要考查了二次函数的定义,准确计算是解题的关键9、C【解析】【分析】根据二次函数图像的对称性,求出对称轴,即可得到答案.【详解】解:根据题意,炮弹在第秒与第秒时的高度相等,抛物线的对称轴为:秒,第12秒距离对称轴最近,上述时间中,第12秒时炮弹高度最高;故选:C.【考点】本题考查了二次函数的性质和对称性,解题的关键是掌握二次函数的对称性进行解题.10、A【解析】【分析】先分析二次函数的图像的开口方向即对称轴位置,而一次函数的图像恒过定点,即可得出正确选项【详解】二次函数的对称轴为,一次函数的图像恒过定点,所以一次函数的图像与二次函数的对称轴的交点为,只有A
15、选项符合题意故选A【考点】本题考查了二次函数的图像与性质、一次函数的图像与性质,解决本题的关键是能推出一次函数的图像恒过定点,本题蕴含了数形结合的思想方法等二、填空题1、增大【解析】【分析】根据其顶点式函数可知,抛物线开口向上,对称轴为 ,在对称轴右侧y随x的增大而增大,可得到答案【详解】由题意可知: 函数,开口向上,在对称轴右侧y随x的增大而增大,又对称轴为,当时,y随的增大而增大,故答案为:增大【考点】本题主要考查了二次函数的对称轴及增减性,掌握当二次函数开口向上时,在对称轴的右侧y随x的增大而增大,在对称轴的左侧y随x的增大而减小是解题的关键2、 【解析】【分析】(1)过点F作FDBC于
16、点D,由已知先证,得,进可得FCD的度数,所以可求得FD,设等边ABC的边长为a,则可把ECF的面积表示出来,并求出面积的最大值,此时便可求得FEC的度数;(2)由图知ECF的最大值,由(1)中计算知道它的面积的最大值,则两者相等,可求得等边ABC的边长【详解】过F作,交BC的延长线于D,如图:为等边三角形,为等边三角形,设等边边长是a,则,当时,有最大值为,(1)当的面积最大时,即E是BC的中点,故答案为:;(2)当时,有最大值为,由图可知最大值是,解得或边长,舍去,等边的边长为,故答案为:【考点】本题考查等边三角形及二次函数知识,解题关键是证明由,用x的代数式表示的面积3、【解析】【分析】
17、利用抛物线的对称性得到抛物线与轴的另一个交点坐标为,从而得到抛物线在轴上截得的线段的长,利用和对称轴方程不能确定顶点的纵坐标和的值.【详解】二次函数的图象过点,对称轴为直线,抛物线与轴的另一个交点坐标为,抛物线在轴上截得的线段的长是.故答案为:.【考点】本题考查了抛物线与轴的交点:把求二次函数(,是常数,)与轴的交点坐标问题转化解.关于的一元二次方程即可求得交点横坐标.4、1x2【解析】【分析】根据图象可以直接回答,使得y1y2的自变量x的取值范围就是直线y1=kx+m落在二次函数y2=ax2+bx+c的图象上方的部分对应的自变量x的取值范围【详解】根据图象可得出:当y1y2时,x的取值范围是
18、:1x2故答案为:1x2【考点】本题考查了二次函数的性质本题采用了“数形结合”的数学思想,使问题变得更形象、直观,降低了题的难度5、 【解析】【分析】(1)把P(2,3)代入中,即可求解;(2)由|m|2,结合二次函数的图像和性质,即可求n的范围【详解】解:(1)把P(2,3)代入中,得:,a2,(x1)22;图象的顶点坐标为(1,2);(2)点Q到y轴的距离小于2,|m|2,2m2,当m=-1时,y的最小值= 2,当m=2时,y的最大值= 11,2n11【考点】本题考查二次函数的图象及性质;熟练掌握二次函数的图象及性质,找到二次函数图像的对称轴,是解题的关键三、解答题1、 (1)y10x+5
19、40;(2)当销售单价定为37元时,才能使每天的销售利润最大,最大利润是2890元【解析】【分析】(1)设函数关系式为ykx+b,由销售单价为28元时,每天的销售量为260个;销售单价为30元时,每天的销量为240个;列方程组求解即可;(2)由每天销售利润每个遮阳伞的利润销售量,列出函数关系式,再由二次函数的性质求解即可;(1)解:设一次函数关系式为ykx+b,由题意可得:,解得:,函数关系式为y10x+540;(2)解:由题意可得:w(x20)y(x20)(10x+540)10(x37)2+2890,100,二次函数开口向下,当x37时,w有最大值为2890,答:当销售单价定为37元时,才能
20、使每天的销售利润最大,最大利润是2890元【考点】本题考查了一次函数和二次函数的实际应用,待定系数法求解析式,掌握二次函数的性质是解题的关键2、(1);(2)【解析】【分析】(1)根据抛物线与x轴交于A,B两点,则可得,求解即可;(2)首先解方程,利用表示出和的长,根据,列方程求得m的值,进而得出解析式【详解】解:(1)抛物线与x轴交于A,B两点,即,整理得:,解得:;(2)直线经过点A并与y轴交于点D,令,则,抛物线的两个交点为:,m0,解得:(舍)或,抛物线的解析式为:【考点】本题考查了二次函数与一元二次方程以及一次函数与坐标轴的交点问题,熟知二次函数与轴的交点的横坐标就是对应方程的根3、
21、(1);(2)单价为46元时,利润最大为3840元.(3)单价的范围是45元到55元.【解析】【分析】(1)可用待定系数法来确定y与x之间的函数关系式;(2)根据利润=销售量单件的利润,然后将(1)中的函数式代入其中,求出利润和销售单件之间的关系式,然后根据其性质来判断出最大利润;(3)首先得出w与x的函数关系式,进而利用所获利润等于3600元时,对应x的值,根据增减性,求出x的取值范围【详解】(1)由题意得: 故y与x之间的函数关系式为:y=-10x+700,(2)由题意,得-10x+700240,解得x46,设利润为w=(x-30)y=(x-30)(-10x+700),w=-10x2+10
22、00x-21000=-10(x-50)2+4000,-100,x50时,w随x的增大而增大,x=46时,w大=-10(46-50)2+4000=3840,答:当销售单价为46元时,每天获取的利润最大,最大利润是3840元;(3)w-150=-10x2+1000x-21000-150=3600,-10(x-50)2=-250,x-50=5,x1=55,x2=45,如图所示,由图象得:当45x55时,捐款后每天剩余利润不低于3600元【考点】此题主要考查了二次函数的应用、一次函数的应用和一元二次方程的应用,利用函数增减性得出最值是解题关键,能从实际问题中抽象出二次函数模型是解答本题的重点和难点4、
23、0【解析】【分析】根据二次函数的定义:一般地,形如y=ax2+bx+c(a、b、c是常数,a0)的函数是二次函数,即可答题【详解】解:根据二次函数的定义:m23m+2=2,且m30,解得:m=0【考点】本题考查二次函数的定义,解题的关键是熟练掌握二次函数的定义5、(1)2个;(2)不能,见解析;(3)S5【解析】【分析】(1)由题意可知当a1,m0时,抛物线的表达式为:yx2+4x+2,80,故C与x轴的交点个数为2;(2)根据题意假设点C在第四象限,则0,且+20,即可求解;(3)由题意可知抛物线的表达式为:y2x24(m1)x+(3m26m+2),则顶点坐标为:(m1,m22m),当m1t
24、时,mt+1,则点A(t,t21);当m1t+1时,mt+3,点B(t+2,t2+4t+3);点A在第三象限,即t0且t210,AB222+(4t+4)216(t+1)2+4,即可求解【详解】解:(1)当a1,m0时,抛物线的表达式为:yx2+4x+2,42-412=80,故C与x轴的交点个数为2个;(2)当m0时,判断抛物线C的顶点为:(,+2),假设点C在第四象限,则0,且+20,解得:0且1,故a无解,故顶点不能落在第四象限;(3)将点(m,m22m+2)代入抛物线表达式并整理得:(a2)m20,m0,故a2;则抛物线的表达式为:y2x24(m1)x+(3m26m+2),则顶点坐标为:(m1,m22m),当m1t时,mt+1,则点A(t,t21);当m1t+2时,mt+3,点B(t+2,t2+4t+3);而点A在第三象限,即t0且t210,解得:1t0;yByA4t+40,故点B在点A的右上方,AB222+(4t+4)216(t+1)2+4,1t0时,4AB220;S()2,故S5【考点】本题考查的是二次函数综合运用,涉及到一次函数的性质、解不等式、圆的基本知识等,综合性强,弄清题意,正确运用相关知识是解题的关键