收藏 分享(赏)

2022-2023学年度人教版九年级数学上册第二十三章旋转同步训练试卷(含答案详解版).docx

上传人:a**** 文档编号:641157 上传时间:2025-12-12 格式:DOCX 页数:30 大小:884.05KB
下载 相关 举报
2022-2023学年度人教版九年级数学上册第二十三章旋转同步训练试卷(含答案详解版).docx_第1页
第1页 / 共30页
2022-2023学年度人教版九年级数学上册第二十三章旋转同步训练试卷(含答案详解版).docx_第2页
第2页 / 共30页
2022-2023学年度人教版九年级数学上册第二十三章旋转同步训练试卷(含答案详解版).docx_第3页
第3页 / 共30页
2022-2023学年度人教版九年级数学上册第二十三章旋转同步训练试卷(含答案详解版).docx_第4页
第4页 / 共30页
2022-2023学年度人教版九年级数学上册第二十三章旋转同步训练试卷(含答案详解版).docx_第5页
第5页 / 共30页
2022-2023学年度人教版九年级数学上册第二十三章旋转同步训练试卷(含答案详解版).docx_第6页
第6页 / 共30页
2022-2023学年度人教版九年级数学上册第二十三章旋转同步训练试卷(含答案详解版).docx_第7页
第7页 / 共30页
2022-2023学年度人教版九年级数学上册第二十三章旋转同步训练试卷(含答案详解版).docx_第8页
第8页 / 共30页
2022-2023学年度人教版九年级数学上册第二十三章旋转同步训练试卷(含答案详解版).docx_第9页
第9页 / 共30页
2022-2023学年度人教版九年级数学上册第二十三章旋转同步训练试卷(含答案详解版).docx_第10页
第10页 / 共30页
2022-2023学年度人教版九年级数学上册第二十三章旋转同步训练试卷(含答案详解版).docx_第11页
第11页 / 共30页
2022-2023学年度人教版九年级数学上册第二十三章旋转同步训练试卷(含答案详解版).docx_第12页
第12页 / 共30页
2022-2023学年度人教版九年级数学上册第二十三章旋转同步训练试卷(含答案详解版).docx_第13页
第13页 / 共30页
2022-2023学年度人教版九年级数学上册第二十三章旋转同步训练试卷(含答案详解版).docx_第14页
第14页 / 共30页
2022-2023学年度人教版九年级数学上册第二十三章旋转同步训练试卷(含答案详解版).docx_第15页
第15页 / 共30页
2022-2023学年度人教版九年级数学上册第二十三章旋转同步训练试卷(含答案详解版).docx_第16页
第16页 / 共30页
2022-2023学年度人教版九年级数学上册第二十三章旋转同步训练试卷(含答案详解版).docx_第17页
第17页 / 共30页
2022-2023学年度人教版九年级数学上册第二十三章旋转同步训练试卷(含答案详解版).docx_第18页
第18页 / 共30页
2022-2023学年度人教版九年级数学上册第二十三章旋转同步训练试卷(含答案详解版).docx_第19页
第19页 / 共30页
2022-2023学年度人教版九年级数学上册第二十三章旋转同步训练试卷(含答案详解版).docx_第20页
第20页 / 共30页
2022-2023学年度人教版九年级数学上册第二十三章旋转同步训练试卷(含答案详解版).docx_第21页
第21页 / 共30页
2022-2023学年度人教版九年级数学上册第二十三章旋转同步训练试卷(含答案详解版).docx_第22页
第22页 / 共30页
2022-2023学年度人教版九年级数学上册第二十三章旋转同步训练试卷(含答案详解版).docx_第23页
第23页 / 共30页
2022-2023学年度人教版九年级数学上册第二十三章旋转同步训练试卷(含答案详解版).docx_第24页
第24页 / 共30页
2022-2023学年度人教版九年级数学上册第二十三章旋转同步训练试卷(含答案详解版).docx_第25页
第25页 / 共30页
2022-2023学年度人教版九年级数学上册第二十三章旋转同步训练试卷(含答案详解版).docx_第26页
第26页 / 共30页
2022-2023学年度人教版九年级数学上册第二十三章旋转同步训练试卷(含答案详解版).docx_第27页
第27页 / 共30页
2022-2023学年度人教版九年级数学上册第二十三章旋转同步训练试卷(含答案详解版).docx_第28页
第28页 / 共30页
2022-2023学年度人教版九年级数学上册第二十三章旋转同步训练试卷(含答案详解版).docx_第29页
第29页 / 共30页
2022-2023学年度人教版九年级数学上册第二十三章旋转同步训练试卷(含答案详解版).docx_第30页
第30页 / 共30页
亲,该文档总共30页,全部预览完了,如果喜欢就下载吧!
资源描述

1、人教版九年级数学上册第二十三章旋转同步训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,将ABC绕点B顺时针旋转50得DBE,点C的对应点恰好落在AB的延长线上,连接AD,下列结论不一定成立的是(

2、)AAB=DBBCBD=80CABD=EDABCDBE2、将绕点旋转得到,则下列作图正确的是( )ABCD3、如图,将绕点顺时针旋转得到,使点的对应点恰好落在边上,点的对应点为,连接下列结论一定正确的是()ABCD4、如图,与关于成中心对称,不一定成立的结论是()ABCD5、如图,ABC是等边三角形,D为BC边上的点,ABD经旋转后到达ACE的位置,那么旋转角为()A75B60C45D156、如图,将绕点A按顺时针旋转一定角度得到,点B的对应点D恰好落在BC边上,若,则CD的长为().ABCD17、点 A(x,y)在第二象限内,且x=2,y=3,则点A关于原点对称的点的坐标为()A(-2,3)

3、B(2,-3)C(-3,2)D(3,-2)8、如图,将斜边为4,且一个角为30的直角三角形AOB放在直角坐标系中,两条直角边分别与坐标轴重合,D为斜边的中点,现将三角形AOB绕O点顺时针旋转120得到三角形EOC,则点D对应的点的坐标为()A(1,)B(,1)C(2,2)D(2,2)9、如图,将ABC绕点A逆时针旋转70得到ADE,点B、C的对应点分别为D、E,当点B、C、D、P在同一条直线上时,则PDE的度数为()A55B70C80D11010、如图,点A,B的坐标分别为(1,1)、(3,2),将ABC绕点A按逆时针方向旋转90,得到ABC,则B点的坐标为()A(1,3)B(1,2)C(0,

4、2)D(0,3)第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,把ABC绕点C按顺时针方向旋转35,得到,交AC于点D,若,则A= 2、如图,在平面直角坐标系中,由绕点顺时针旋转而得,则所在直线的解析式是_3、若点与关于原点对称,则_4、在ABC中,ABAC3,BC2,将ABC绕着点B顺时针旋转,如果点A落在射线BC上的点A处那么AA_5、如图,在RtABC中,BAC90,ABAC4,点D在线段BC上,BD3,将线段AD绕点A逆时针旋转90得到线段AE,EFAC,垂足为点F则AF的长为_三、解答题(5小题,每小题10分,共计50分)1、定义:将图形M绕点P顺时针旋

5、转90得到图形N,则图形N称为图形M关于点P的“垂直图形”例如:在下图中,点D为点C关于点P的“垂直图形” (1)点A关于原点O的“垂直图形”为点B若点A的坐标为(0,2),直接写出点B的坐标;若点B的坐标为(2,1),直接写出点A的坐标;(2)E(-3,3),F(-2,3),G(a,0)线段EF关于点G的“垂直图形”记为EF,点E的对应点为E,点F的对应点为F求点E的坐标;当点G运动时,求的最小值2、在平面直角坐标系xOy中,的顶点坐标分别是,(1)按要求画出图形:将向右平移6个单位得到;再将绕点顺时针旋转90得到;(2)如果将(1)中得到的看成是由经过以某一点M为旋转中心旋转一次得到的,请

6、写出M的坐标3、如图,已知正方形点在边上,以为边在左侧作正方形;以为邻边作平行四边形连接 (1)判断和的数量及位置关系,并说明理由;(2)将绕点顺时针旋转,在旋转过程中,和的数量及位置关系是否发生变化?请说明理由4、如图1,二次函数ya(x+3)(x4)的图象交坐标轴于点A,B(0,2),点P为x轴上一动点(1)求该二次函数的解析式;(2)过点P作PQx轴,分别交线段AB、抛物线于点Q,C,连接AC若OP1,求ACQ的面积;(3)如图2,连接PB,将线段PB绕点P逆时针旋转90得到线段PD当点D在抛物线上时,求点D的坐标5、如图,点是的边上的动点,连接,并将线段绕点逆时针旋转得到线段(1)如图

7、1,作,垂足在线段上,当时,判断点是否在直线上,并说明理由;(2)如图2,若,求以、为邻边的正方形的面积-参考答案-一、单选题1、C【解析】【分析】利用旋转的性质得ABCDBE ,BA=BD,BC=BE,ABD=CBE=50,C=E,再由A、B、E三点共线,由平角定义求出CBD=80,由三角形外角性质判断出ABDE【详解】解:ABC绕点B顺时针旋转50得DBE, AB=DB,BC=BE,ABD=CBE=50,ABCDBE ,故选项A、D一定成立;点C的对应点E恰好落在AB的延长线上,ABD+CBE+CBD =180,.CBD=180-50-50=80,故选项B一定成立;又 ABD=E+BDE,

8、ABDE,故选项C错误,故选C【考点】本题主要考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等2、D【解析】【分析】把一个图形绕某一点O转动一个角度的图形变换叫做旋转.【详解】解:观察选项中的图形,只有D选项为ABO绕O点旋转了180.【考点】本题考察了旋转的定义.3、D【解析】【分析】利用旋转的性质得AC=CD,BC=EC,ACD=BCE,所以选项A、C不一定正确再根据等腰三角形的性质即可得出,所以选项D正确;再根据EBC=EBC+ABC=A+ABC=-ACB判断选项B不一定正确即可【详解】解:绕点顺时针旋转得到,AC=CD,BC=

9、EC,ACD=BCE,A=CDA=;EBC=BEC=,选项A、C不一定正确,A =EBC,选项D正确EBC=EBC+ABC=A+ABC=-ACB不一定等于,选项B不一定正确;故选D【考点】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等也考查了等腰三角形的性质4、D【解析】【分析】根据中心对称的性质即可判断【详解】解:对应点的连线被对称中心平分,A,B正确;成中心对称图形的两个图形是全等形,那么对应线段相等,C正确;和不是对应角,D错误故选:D【考点】本题考查成中心对称两个图形的性质:对应点的连线被对称中心平分;成中心对称图形的两

10、个图形是全等形5、B【解析】【分析】根据题意可知旋转角为,根据等边三角形的性质即可求解【详解】解:ABD经旋转后到达ACE的位置,ABC是等边三角形,旋转角为,故选B【考点】本题考查了等边三角形的性质,找旋转角,找到旋转前后对应的线段所产生的夹角即为旋转是解题的关键6、D【解析】【分析】根据直角三角形两锐角互余可得C=30,根据含30角的直角三角形的性质可求出BC的长,然后根据旋转的性质可得AB=AD,然后判断出ABD是等边三角形,根据等边三角形的三条边都相等可得BD=AB,然后根据CD=BC-BD计算即可得解【详解】解:B=60,C=90-60=30,AB=1,BC=2AB=2,由旋转的性质

11、得,AB=AD,ABD是等边三角形,BD=AB=1,CD=BC-BD=2-1=1故选:D【考点】本题考查了旋转的性质,含30角的直角三角形的性质,等边三角形的判定与性质,熟记性质并判断出ABD是等边三角形是解题的关键7、B【解析】【分析】根据A(x,y)在第二象限内可以判断x,y的符号,再根据|x|=2,|y|=3就可以确定点A的坐标,进而确定点A关于原点的对称点的坐标【详解】A(x,y)在第二象限内,x0 y0,又|x|=2,|y|=3,x=-2, y=3,点A关于原点的对称点的坐标是(2,-3)故选:B【考点】本题考查了关于原点对称的点的坐标,由点所在的象限能判断出坐标的符号,同时考查了关

12、于原点对称的点坐标之间的关系,难度一般8、A【解析】【分析】根据题意画出AOB绕着O点顺时针旋转120得到的AOB,连接OD,OD,过D作DMy轴,由旋转的性质得到DOD120,根据ADBDOD2,得到AOD度数,进而求出MOD度数为30,在直角三角形OMD中求出OM与MD的长,即可确定出D的坐标.【详解】解:根据题意画出AOB绕着O点顺时针旋转120得到的AOB,连接OD,OD,过D作DMy轴,DOD120,D为斜边AB的中点,ADODAB2, BAODOA30,MOD30,在RtOMD中,ODOD2,MD1,OM=,则D的对应点D的坐标为(1,),故选:A.【考点】此题考查旋转的性质,直角

13、三角形斜边中线等于斜边的一半的性质,30度角所对的直角边等于斜边的一半的性质,勾股定理,正确掌握旋转的性质得到对应的旋转图形进行解答是解题的关键.9、B【解析】【分析】首先根据旋转的性质可得,AB=AD,据此即可求得,据此即可求得【详解】解:将ABC绕点A逆时针旋转70得到ADE,AB=AD,又点B、C、D、P在同一条直线上,故选:B【考点】本题考查了旋转的性质,等边对等角的应用,三角形内角和定理,熟练掌握和运用旋转的性质是解决本题的关键10、D【解析】【分析】根据题意画出图形,然后结合直角坐标系即可得出B的坐标【详解】解:如图,根据图形可得:点B坐标为(0,3),故选:D【考点】本题考查了旋

14、转作图的知识及旋转后坐标的变化,解答本题的关键是根据题意所述的旋转三要素画出图形,然后结合直角坐标系解答二、填空题1、55【解析】【分析】根据旋转的性质可得,再由直角三角形两锐角互余,即可求解【详解】解:把ABC绕点C按顺时针方向旋转35,得到, A=55故答案为:55【考点】本题主要考查了图形的旋转,直角三角形两锐角的关系,熟练掌握旋转的性质,直角三角形两锐角互余是解题的关键2、【解析】【分析】过点C作CDx轴于点D,易知ACDBAO(AAS),已知A(2,0),B(0,1),从而求得点C坐标,设直线AC的解析式为y=kx+b,将点A,点C坐标代入求得k和b,从而得解【详解】解: 过点作轴于

15、点,BOA=ADC=90.BAC=90,BAO+CAD=90.ABO+BAO=90,CAD=ABO.AB=AC,.设直线的解析式为,将点,点坐标代入得直线的解析式为故答案为【考点】本题是几何图形旋转与待定系数法求一次函数解析式的综合题,难度中等3、【解析】【分析】根据原点对称的点的特征求解即可;【详解】点与点关于原点对称,故故答案为:【考点】本题主要考查了关于原点对称的点的坐标,准确计算是解题的关键4、2【解析】【分析】作AHBC于H,如图,利用等腰三角形的性质得BHCHBC1,利用勾股定理可计算出AH2,再根据旋转的性质得BABA3,则HA2,然后利用勾股定理可计算出AA的长【详解】解:作A

16、HBC于H,如图,ABAC3,BC2,BHCHBC1,AH,ABC绕着点B顺时针旋转,如果点A落在射线BC上的点A处,BABA3,HA2,在RtAHA中,AA故答案为2【考点】此题考查旋转的性质,等腰三角形的性质,解题关键在于掌握对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等5、1【解析】【分析】根据勾股定理先求出BC边长,再求出DC长,过点D作DM垂直AC,可证,即AF=DM,在等腰直角DMC中可求DM,即可直接求解【详解】解:在RtABC中,BAC=90,AB=AC=4,根据勾股定理得,AB2+AC2=BC2,又BD=3,DCBCBD过点D作DM

17、AC于点M,由旋转的性质得DAE=90,ADAE,DAC+EAF=90又DAC+ADM=90,ADM=EAF在RtADM和RtEAF中,(AAS),AF=DM在等腰RtDMC中,由勾股定理得,DM2+MC2=DC2,DM=1,AF=DM=1故答案为:1【考点】本题主要考查等腰直角三角形,旋转的性质以及全等三角形的判定与性质,证明ADMEAF是解答本题的关键三、解答题1、 (1)B(2,0);A(-1,2);(2)E(3+a,3+a);FF的最小值为3【解析】【分析】(1)根据“垂直图形”的定义解决问题即可;(2)构造全等三角形,利用全等三角形的性质求解即可;FGF是等腰直角三角形,当FGx轴时

18、,FG取得最小值,即FF有最小值,据此求解即可解决问题(1)解:如图中,观察图象可知B(2,0);如图,AOB=ACO=ODB=90,A+AOC=90,AOC+BOD=90,A=BOD,AO=OB,AOCOBD(AAS),OC=BD=1,AC=OD=2,A(-1,2);(2)解:如图,过点E作EPx轴于P,过点E作EHx轴于HEPG=EGE=GHE=90,E+PGE=90,PGE+EGH=90,E=EGH,EG=GE,EPGGHE(AAS),EP=GH=3,PG=EH=a+3,OH=3+a,E(3+a,3+a);FGF=90,FG=GF,FGF是等腰直角三角形,FF=FG,当FGx轴时,FG取

19、得最小值,即FF有最小值,FF的最小值为3【考点】本题考查几何变换综合题,考查了旋转变换,全等三角形的判定和性质,等腰直角三角形的判定和性质,勾股定理等知识,解题的关键是理解题意,学会添加常用辅助线,构造全等三角形解决问题2、 (1)见解析;见解析;(2)M(1,-1)【解析】【分析】(1)根据平移的性质得出、的位置,顺次连接即可;根据旋转的性质得出、的位置,顺次连接即可;(2)连接CC2,AA1,线段CC2,AA1的垂直平分线的交点即为M点的位置,作出M点写出坐标即可(1)解:如图,即为所求;如图,即为所求;(2)解:连接CC2,AA1,线段CC2,AA1的垂直平分线的交点即为M点的位置,由

20、图可知,M的坐标为(1,-1)【考点】本题考查了作图平移和旋转,熟练掌握平移和旋转的性质找出对应点的位置是解题的关键3、(1);理由见解析;(2)与的数量及位置关系都不变;答案见解析【解析】【分析】(1)证明,由全等三角形的性质得出,得出,则可得出结论;(2)证明,由全等三角形的性质得出,由平行线的性质证出,则可得出结论【详解】解:(1),由题意可得,平行四边形为矩形,设与交于点,则,即(2)与的数量及位置关系都不变如图,延长到点,四边形为平行四边形,又,即【考点】本题考查了旋转的性质,全等三角形的判定和性质,正方形的性质,解题的关键是:熟练掌握正方形的性质4、(1);(2);(3)或【解析】

21、【分析】(1)将代入,即可求解;(2)先求直线的解析式为,则,可求;(3)设,过点作轴垂线交于点,可证明,则,将点代入抛物线解析式得,求得或【详解】解:(1)将代入,;(2)令,则,或,设直线的解析式为,轴,;(3)设,如图2,过点作轴垂线交于点,解得或,或【考点】本题是二次函数综合题,考查了二次函数图象和性质,待定系数法求抛物线解析式,三角形面积,全等三角形判定和性质,旋转的性质等,解题的关键是熟练掌握二次函数的图象及性质,分类讨论,数形结合5、(1)点在直线上,见解析;(2)18【解析】【分析】(1)根据,得到,可得线段逆时针旋转落在直线上,即可得解;(2)作于,得出,再根据平行线的性质得到,再根据直角三角形的性质计算即可;【详解】解:(1)结论:点在直线上;,即线段逆时针旋转落在直线上,即点在直线上(2)作于,即以、为邻边的正方形面积 【考点】本题主要考查了旋转综合题,结合平行线的性质计算是解题的关键

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 语文

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1