1、九年级数学上册第二十一章一元二次方程综合练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,把长40,宽30的矩形纸板剪掉2个小正方形和2个小矩形(阴影部分即剪掉部分),将剩余的部分折成一个有盖的长
2、方体盒子,设剪掉的小正方形边长为(纸板的厚度忽略不计),若折成长方体盒子的表面积是950,则的值是()A3B4C4.8D52、若关于的方程没有实数根,则的值可以为()ABC0D13、我们知道方程x22x-30的解是x11,x2-3,现给出另一个方程(2x3)22(2x3)-30,它的解是()Ax11,x23Bx11,x2-3Cx1-1,x23Dx1-1,x2-34、若关于的方程是一元二次方程,则满足的条件是()ABCD5、定义运算:例如则方程的根的情况为()A有两个不相等的实数根B有两个相等的实数根C无实数根D只有一个实数根6、关于x的方程有两个实数根,且,那么m的值为()ABC或1D或47、
3、设,是方程的两个实数根,则的值为()A2020B2021C2022D20238、九章算术“勾股”章有一题:“今有户高多于广六尺八寸,两隅相去适一丈.问户高、广各几何.”大意是说:已知长方形门的高比宽多6尺8寸,门的对角线长1丈,那么门的高和宽各是多少(1丈10尺,1尺10寸)?若设门的宽为x寸,则下列方程中,符合题意的是()Ax2+12(x+0.68)2Bx2+(x+0.68)212Cx2+1002(x+68)2Dx2+(x+68)210029、扬帆中学有一块长,宽的矩形空地,计划在这块空地上划出四分之一的区域种花,小禹同学设计方案如图所示,求花带的宽度设花带的宽度为,则可列方程为()ABCD
4、10、一元二次方程y24y30配方后可化为()A(y2)27B(y+2)27C(y2)23D(y+2)23第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若关于x的一元二次方程ax2+bx+1=0(a0)的解是x=-1,则2021-a+b的值是_2、一元二次方程的两根为,则_3、中国“一带一路”倡议给沿线国家带来很大的经济效益若沿线某地区居民2017年人均收入300美元,预计2019年人均收入将达到432美元,则2017年到2019年该地区居民年人均收入增长率为_.4、已知一元二次方程ax2+bx+c=0(a0),下列结论:若方程两根为-1和2,则2a+c=0;若ba+
5、c,则方程有两个不相等的实数根;若b=2a+3c,则方程有两个不相等的实数根;若m是方程的一个根,则一定有b2-4ac=(2am+b)2成立其中结论正确的序号是_5、抛物线y=3(x2)2+5的顶点坐标是_三、解答题(5小题,每小题10分,共计50分)1、为培育和践行社会主义核心价值观,弘扬传统美德,学校决定购进相同数量的名著平凡的世界(简称A)和恰同学少年(简称B),其中A的标价比B的标价多25元,为此,学校划拨了1800元用于购买A,划拨了800元用于购买B(1)求A、B的标价各多少元?(2)阳光书店为支持学校的读书活动,决定将A、B两本名著的标价都降低m%后卖给学校,这样,A的数量不变,
6、B还可多买2m本,且总购书款不变,求m的值2、陕西某景区吸引了大量中外游客前来参观,如果游客过多,对进景区的游客健康检查、拥堵等问题会产生不利影响,但也要保证一定的门票收入,因此景区采取了涨浮门票价格的方法来控制旅游人数,在该方法实施过程中发现:每周旅游人数与票价之间存在着如图所示的一次函数关系在这种情况下,如果要保证每周3 000万元的门票收入,那么每周应限定旅游人数是多少万人?门票价格应是多少元?3、用配方法解下列关于x的方程(1)(2)4、解下列一元二次方程:(1);(2)5、已知关于x的一元二次方程有两个不相等的实数根(1)求k的取值范围;(2)若方程的两个不相等实数根是a,b,求的值
7、-参考答案-一、单选题1、D【解析】【分析】观察图形可知阴影部分小长方形的长为,再根据去除阴影部分的面积为950,列一元二次方程求解即可【详解】解:由图可得出,整理,得,解得,(不合题意,舍去)故选:D【考点】本题考查的知识点是一元二次方程的应用,根据图形找出阴影部分小长方形的长是解此题的关键2、A【解析】【分析】根据关于x的方程没有实数根,判断出0,求出m的取值范围,再找出符合条件的m的值【详解】解:关于的方程没有实数根,=0,解得:,故选项中只有A选项满足,故选A.【考点】本题考查了一元二次方程根的判别式,需要掌握一元二次方程没有实数根相当于判别式小于零.3、D【解析】【分析】将作为一个整
8、体,根据题意,即可得到的值,再通过求解一元一次方程,即可得到答案【详解】根据题意,得:或或 故选:D【考点】本题考查了一元一次方程、一元二次方程的知识;解题的关键是熟练掌握一元二次方程的性质,从而完成求解4、C【解析】【分析】根据一元二次方程的概念可直接得出答案【详解】关于的方程是一元二次方程,故选:C【考点】本题主要考查一元二次方程的概念,掌握一元二次方程的概念是解题的关键5、A【解析】【分析】先根据新定义得出方程,再根据一元二次方程的根的判别式可得答案【详解】解:根据定义得: 原方程有两个不相等的实数根,故选【考点】本题考查了新定义,考查学生的学习与理解能力,同时考查了一元二次方程的根的判
9、别式,掌握以上知识是解题的关键6、A【解析】【分析】通过根与系数之间的关系得到,由可求出m的值,通过方程有实数根可得到,从而得到m的取值范围,确定m的值【详解】解:方程有两个实数根,整理得,解得,若使有实数根,则,解得,所以,故选:A【考点】本题考查了一元二次方程根与系数之间的关系和跟的判别式,注意使一元二次方程有实数根的条件是解题的关键7、B【解析】【分析】由题意根据一元二次方程的解及根与系数的关系可得出,将其代入中即可得出答案【详解】解:,是方程的两个实数根,=2022-1=2021故选:B【考点】本题考查根与系数的关系以及一元二次方程的解,根据一元二次方程的解及根与系数的关系找出是解题的
10、关键8、D【解析】【分析】1丈100寸,6尺8寸68寸,设门的宽为x寸,则门的高度为(x+68)寸,利用勾股定理及门的对角线长1丈(100寸),即可得出关于x的一元二次方程,此题得解.【详解】解:1丈100寸,6尺8寸68寸.设门的宽为x寸,则门的高度为(x+68)寸,依题意得:x2+(x+68)21002.故选:D.【考点】本题主要考查了勾股定理的应用、由实际问题抽象出一元二次方程,准确计算是解题的关键9、D【解析】【分析】根据空白区域的面积矩形空地的面积可得.【详解】设花带的宽度为,则可列方程为,故选D【考点】本题主要考查由实际问题抽象出一元二次方程,解题的关键是根据图形得出面积的相等关系
11、.10、A【解析】【分析】先表示得到,再把方程两边加上 4 ,然后把方程左边配成完全平方形式即可 【详解】解:,故选【考点】本题考查解一元二次方程配方法: 将一元二次方程配成的形式, 再利用直接开平方法求解, 这种解一元二次方程的方法叫配方法 二、填空题1、2022【解析】【分析】把x=-1代入方程可以得到-a+b的值,从而得到所求答案【详解】解:x=-1,a-b+1=0,-a+b=1,2021-a+b=2022,故答案为2022 【考点】本题考查一元二次方程的应用,熟练掌握一元二次方程解的意义、等式的性质和代数式求值的方法是解题关键2、【解析】【分析】根据根与系数的关系表示出和即可;【详解】
12、,=,=故答案为【考点】本题主要考查了一元二次方程根与系数的关系,准确利用知识点化简是解题的关键3、20【解析】【分析】设该地区人均收入增长率为x,根据2017年人均收入300美元,预计2019年人均收入将达到432美元,可列方程求解.【详解】解:设该地区人均收入增长率为x,则300(1+x)2=432,(1+x)2=1.44,解得x=0.2(x=-2.2舍),该地区人均收入增长率为20.故本题答案应为:20.【考点】一元二次方程在实际生活中的应用是本题的考点,根据题意列出方程是解题的关键.4、【解析】【分析】利用根与系数的关系判断;由=b2-4ac判断;由判别式可判断;将x=m代入方程得am
13、2=-(bm+c),再代入=(2am+b)2变形可判断【详解】解:若方程两根为-1和2,则=-12=-2,即c=-2a,2a+c=2a-2a=0,故正确;由ba+c不能判断=b2-4ac值的大小情况,故错误;若b=2a+3c,则=b2-4ac=4(a+c)2+5c20,一元二次方程ax2+bx+c=0有两个不相等的实数根,故正确若m是方程ax2+bx+c=0的一个根,所以有am2+bm+c=0,即am2=-(bm+c),而(2am+b)2=4a2m2+4abm+b2=4a-(bm+c)+4abm+b2=4abm-4abm-4ac+b2=b2-4ac故正确;故答案为:【考点】本题考查了一元二次方
14、程ax2+bx+c=0(a0)的根与系数的关系及根的判别式=b2-4ac:当0,方程有两个不相等的实数根;当=0,方程有两个相等的实数根;当0,方程没有实数根5、(2,5)【解析】【详解】试题分析:由于抛物线y=a(xh)2+k的顶点坐标为(h,k),由此即可求解解:抛物线y=3(x2)2+5,顶点坐标为:(2,5)故答案为(2,5)考点:二次函数的性质三、解答题1、(1)45元,20元;(2)35【解析】【分析】(1)设B的标价为x元,则A的标价为(x+25)元,列方程,解方程即可;(2)将A、B两本名著的新标价计算出来,根据数量单价数量单价 ,列方程求解即可【详解】解:(1)设B的标价为x
15、元,则A的标价为(x+25)元,列方程,解方程,得x=20,经检验,x=20是原方程的根,所以x+25=45,答:A的标价是45元,B的标价是20元;(2)将A、B两本名著的标价都降低m%后,A的标价为45(1- m%)元,B的标价为20(1- m%)元,原购买数量为A:40(本),变化后的购买数量:A种40本,B种(40+2m)本,根据题意,得4045(1- m%)+(40+2m)20(1- m%)=2600, 解得:经检验:不合题意舍去,取 答:的值为【考点】本题考查了分式方程的应用,熟记数量单价费用是解题的关键,注意分式方程必须要验根2、10万人、300元【解析】【分析】设门票价格为x元
16、,每周旅游人数为y万人,根据题中的图中信息,利用待定系数法即可求解出每周旅游人数y与票价x之间存在一次函数关系,再根据题意列出一元二次方程即可求解【详解】解:设门票价格为x元,每周旅游人数为y万人,每周旅游人数与票价之间存在一次函数关系,设一次函数为ykxb,则有,解得:,由题意得:,解得100,300当x100时,y30;当x300时,y10既要控制人数又要保证收入,每周应限定旅游人数是10万人,门票价格应是300元【考点】本题主要考查一次函数与一元二次方程的实际应用,根据等量关系,列出一次函数解析式和方程,是解题的关键3、(1),;(2),【解析】【分析】(1)根据配方法,先把常数项移到等
17、式右边,再两边同时加上36,等式左边凑成完全平方形式,再直接开平方得出结果;(2)根据配方法,先把二次项系数化为1,然后把常数项移到等式右边,再两边同时加上1,等式左边凑成完全平方形式,再直接开平方得出结果【详解】(1),;(2),【考点】本题考查一元二次方程的解法配方法,解题的关键是熟练掌握配方法的方法4、 (1),(2),【解析】【分析】(1)方程整理后得,再运用因式分解法求出方程的解即可;(2)原方程运用配方法求解即可(1)整理得, ,(2) ,【考点】本题主要考查了解一元二次方程,能选择适当的方法解一元二次方程是解此题的关键5、(1)k-1;(2)1【解析】【分析】(1)根据0列不等式求解即可;(2)根据根与系数的关系求出a+b、ab的值,然后代入所给代数式计算即可.【详解】解:(1)由题意得=4+4k0,k-1;(2)a+b=-2,ab=-k,= = =1.【考点】本题考查了一元二次方程ax2+bx+c=0(a0)根的判别式与根的关系,以及根与系数的关系,若x1,x2为方程的两个根,则x1,x2与系数的关系式:,