收藏 分享(赏)

2022-2023学年度人教版九年级数学上册期中测评试题 A卷(解析版).docx

上传人:a**** 文档编号:640700 上传时间:2025-12-12 格式:DOCX 页数:25 大小:853.79KB
下载 相关 举报
2022-2023学年度人教版九年级数学上册期中测评试题 A卷(解析版).docx_第1页
第1页 / 共25页
2022-2023学年度人教版九年级数学上册期中测评试题 A卷(解析版).docx_第2页
第2页 / 共25页
2022-2023学年度人教版九年级数学上册期中测评试题 A卷(解析版).docx_第3页
第3页 / 共25页
2022-2023学年度人教版九年级数学上册期中测评试题 A卷(解析版).docx_第4页
第4页 / 共25页
2022-2023学年度人教版九年级数学上册期中测评试题 A卷(解析版).docx_第5页
第5页 / 共25页
2022-2023学年度人教版九年级数学上册期中测评试题 A卷(解析版).docx_第6页
第6页 / 共25页
2022-2023学年度人教版九年级数学上册期中测评试题 A卷(解析版).docx_第7页
第7页 / 共25页
2022-2023学年度人教版九年级数学上册期中测评试题 A卷(解析版).docx_第8页
第8页 / 共25页
2022-2023学年度人教版九年级数学上册期中测评试题 A卷(解析版).docx_第9页
第9页 / 共25页
2022-2023学年度人教版九年级数学上册期中测评试题 A卷(解析版).docx_第10页
第10页 / 共25页
2022-2023学年度人教版九年级数学上册期中测评试题 A卷(解析版).docx_第11页
第11页 / 共25页
2022-2023学年度人教版九年级数学上册期中测评试题 A卷(解析版).docx_第12页
第12页 / 共25页
2022-2023学年度人教版九年级数学上册期中测评试题 A卷(解析版).docx_第13页
第13页 / 共25页
2022-2023学年度人教版九年级数学上册期中测评试题 A卷(解析版).docx_第14页
第14页 / 共25页
2022-2023学年度人教版九年级数学上册期中测评试题 A卷(解析版).docx_第15页
第15页 / 共25页
2022-2023学年度人教版九年级数学上册期中测评试题 A卷(解析版).docx_第16页
第16页 / 共25页
2022-2023学年度人教版九年级数学上册期中测评试题 A卷(解析版).docx_第17页
第17页 / 共25页
2022-2023学年度人教版九年级数学上册期中测评试题 A卷(解析版).docx_第18页
第18页 / 共25页
2022-2023学年度人教版九年级数学上册期中测评试题 A卷(解析版).docx_第19页
第19页 / 共25页
2022-2023学年度人教版九年级数学上册期中测评试题 A卷(解析版).docx_第20页
第20页 / 共25页
2022-2023学年度人教版九年级数学上册期中测评试题 A卷(解析版).docx_第21页
第21页 / 共25页
2022-2023学年度人教版九年级数学上册期中测评试题 A卷(解析版).docx_第22页
第22页 / 共25页
2022-2023学年度人教版九年级数学上册期中测评试题 A卷(解析版).docx_第23页
第23页 / 共25页
2022-2023学年度人教版九年级数学上册期中测评试题 A卷(解析版).docx_第24页
第24页 / 共25页
2022-2023学年度人教版九年级数学上册期中测评试题 A卷(解析版).docx_第25页
第25页 / 共25页
亲,该文档总共25页,全部预览完了,如果喜欢就下载吧!
资源描述

1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版九年级数学上册期中测评试题 A卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、如图,在方格纸中,将绕点按顺时针方向旋转90后得到,则下列四个图形中正确

2、的是( )ABCD2、当0x3,函数yx2+4x+5的最大值与最小值分别是()A9,5B8,5C9,8D8,43、下列图形中,既是轴对称图形,又是中心对称图形的是()ABCD4、二次函数的顶点坐标为,图象如图所示,有下列四个结论:;,其中结论正确的个数为()A个B个C个D个5、如图,把长40,宽30的矩形纸板剪掉2个小正方形和2个小矩形(阴影部分即剪掉部分),将剩余的部分折成一个有盖的长方体盒子,设剪掉的小正方形边长为(纸板的厚度忽略不计),若折成长方体盒子的表面积是950,则的值是() 线 封 密 内 号学级年名姓 线 封 密 外 A3B4C4.8D5二、多选题(5小题,每小题4分,共计20

3、分)1、如图是二次函数图象的一部分,过点,对称轴为直线则错误的有()ABCD2、已知关于的一元二次方程,下列命题是真命题的有()A若,则方程必有实数根B若,则方程必有两个不相等的实根C若是方程的一个根,则一定有成立D若是一元二次方程的根,则3、二次函数yax2+bx+c(a0)图象的一部分如图所示,顶点坐标为(1,m),与x轴的一个交点的坐标为(3,0),则以下结论中正确的为()Aabc0B4a2b+c0C若B(,y1)、C(,y2)为函数图象上的两点,则y1y2D当3x0时方程ax2+bx+ct有实数根,则t的取值范围是0tm4、用配方法解下列方程,配方错误的是()A化为B化为C化为D化为5

4、、二次函数y=a+ bx+c(a0)的部分图象如图,图象过点(1,0),对称轴为直线x=2,下列结论中正确的有() A抛物线与x轴的另一个交点是(5,0);B4a+c2b;C4a+b=0; 线 封 密 内 号学级年名姓 线 封 密 外 D当x1时,y的值随x值的增大而增大第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、如果二次函数的图像在它的对称轴右侧部分是上升的,那么的取值范围是_.2、如图,二次函数y=ax2+bx+c的部分图象与y轴的交点为(0,3),它的对称轴为直线x=1,则下列结论中:c=3;2a+b=0;8a-b+c0;方程ax2+bx+c=0的其中一个根在

5、2,3之间,正确的有_(填序号)3、如图有一抛物线形的拱桥,拱高10米,跨度为40米,则该抛物线的表达式为_.4、如图,正方形ABCD的边长为6,点E在边CD上以点A为中心,把ADE顺时针旋转90至ABF的位置若DE2,则FE_5、你知道吗,对于一元二次方程,我国古代数学家还研究过其几何解法呢!以方程即为例加以说明数学家赵爽(公元34世纪)在其所著的勾股圆方图注中记载的方法是:构造图(如下面左图)中大正方形的面积是,其中它又等于四个矩形的面积加上中间小正方形的面积,即,据此易得那么在下面右边三个构图(矩形的顶点均落在边长为1的小正方形网格格点上)中,能够说明方程的正确构图是_(只填序号)四、解

6、答题(5小题,每小题8分,共计40分)1、如图,在平面直角坐标系中,ABC的BC边与x轴重合,顶点A在y轴的正半轴上,线段OB,OC()的长是关于x的方程的两个根,且满足CO2AO(1)求直线AC的解析式;(2)若P为直线AC上一个动点,过点P作PDx轴,垂足为D,PD与直线AB交于点Q,设CPQ的面积为S(),点P的横坐标为a,求S与a的函数关系式;(3)点M的坐标为,当MAB为直角三角形时,直接写出m的值2、解下列方程(1)x22x0;(2)2x23x10 线 封 密 内 号学级年名姓 线 封 密 外 3、用适当的方法解方程:(1)(1-x)2-2(x-1)-350;(2)x2+4x-20

7、4、已知关于x的一元二次方程有两个相等的实数根,求的值5、已知抛物线(1)该抛物线的对称轴为 ;(2)若该抛物线的顶点在x轴上,求抛物线的解析式;(3)设点M(m,),N(2,)在该抛物线上,若,求m的取值范围-参考答案-一、单选题1、B【解析】【分析】根据绕点按顺时针方向旋转90逐项分析即可【详解】A、是由关于过B点与OB垂直的直线对称得到,故A选项不符合题意;B、是由绕点按顺时针方向旋转90后得到,故B选项符合题意;C、与对应点发生了变化,故C选项不符合题意;D、是由绕点按逆时针方向旋转90后得到,故D选项不符合题意故选:B【考点】本题考查旋转变换解题的关键是弄清旋转的方向和旋转的度数2、

8、A【解析】【分析】利用配方法把原方程化为顶点式,再根据二次函数的性质即可解答【详解】yx2+4x+5x2+4x4+4+5(x2)2+9,当x2时,最大值是9,0x3,x0时,最小值是5,故选:A【考点】本题考查二次函数的最值,掌握二次函数的性质与利用配方法将一般式改为顶点式是解答本题的关键3、C【解析】【分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解【详解】解:A是轴对称图形,不是中心对称图形,故本选项不符合题意; 线 封 密 内 号学级年名姓 线 封 密 外 B既不是轴对称图形,又不是中心对称图形,故本选项不符合题意;C既是轴对称图形,又是中心对称图形,故本选项符合题意;

9、D不是轴对称图形,是中心对称图形,故本选项不符合题意故选:C【考点】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合4、A【解析】【分析】根据二次函数的性质和已知条件,对每一项逐一进行判断即可【详解】解:由图像可知a0,c0,对称轴在正半轴,0,b0,故正确;当x=2时,y0,故,故正确;函数解析式为:y=a(x-1)2+2=ax2-2ax+a+2假设成立,结合解析式则有a+2,解得a,故,正确;故选:A【考点】本题考查了二次函数图象与系数的关系,结合图象,运用所学知识是解题关键5、D【解析】

10、【分析】观察图形可知阴影部分小长方形的长为,再根据去除阴影部分的面积为950,列一元二次方程求解即可【详解】解:由图可得出,整理,得,解得,(不合题意,舍去)故选:D【考点】本题考查的知识点是一元二次方程的应用,根据图形找出阴影部分小长方形的长是解此题的关键二、多选题1、BD【解析】【分析】 线 封 密 内 号学级年名姓 线 封 密 外 由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴x=1可得2a+b的符号;再由根的判别式可得,根据二次函数的对称性进而对所得结论进行判断【详解】解:A、由抛物线的开口向下知a0,对称轴为直线,得2a=b,a、b同号,即b0;故本

11、选项正确,不符合题意;B、对称轴为,得2a=b,2a+b=4a,且a0,2a+b0;故本选项错误,符合题意;C、从图象知,该函数与x轴有两个不同的交点,所以根的判别式,即;故本选项正确,不符合题意;D、3x12,根据二次函数图象的对称性,知当x=1时,y0;又由A知,2a=b,a+b+c0;b+b+c0,即3b+2c0;故本选项错误,符合题意故选:BD【点睛】本题主要考查了二次函数图象与系数之间的关系,熟练运用对称轴的范围求2a与b的关系,二次函数与方程及不等式之间的关系是解决本题的关键2、ABD【解析】【分析】A正确,利用判别式判断即可B正确,证明0,即可判断C错误,c0时,结论不成立D正确

12、,利用求根公式,判断即可【详解】解:A、当x=2是,4a2bc0,故x2是方程的根;则方程ax2bxc0必有实数根,A正确, B、b24ac(3a2)24a(2a2)9a212a48a28aa24a4(a2)2,a0,0,方程有两个不相等的实数根,故B正确C、若c是方程ax2bxc0的一个根,ac2bcc0,c(acb1)0,c0或acb10,故C错误D、t是一元二次方程ax2bxc0的根 线 封 密 内 号学级年名姓 线 封 密 外 t,b24ac(2atb)2,故D正确,故答案为:A,B,D【点睛】本题考查命题与定理,一元二次方程的根的判别式等知识,解题的关键是学会利用参数解决问题,属于中

13、考常考题型3、ABCD【解析】【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断【详解】解:A.函数的对称轴在y轴右侧,故ab0,而c0,故abc0正确,符合题意;B.由图象可以看出,x=-2时,y=4a-2b+c0正确,符合题意;C.若B(-,y1)、C(-,y2)为函数图象上的两点,函数的对称轴为:x=-1,点C比点B离对称轴近,故则y1y2正确,符合题意;D.当-3x0时方程ax2+bx+c=t有实数根,即y=ax2+bx+c与y=t有交点,故则t的取值范围是0tm正确,符合题意故选ABC

14、D【点睛】主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用4、BD【解析】【分析】根据配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1,(3)等式两边同时加上一次项系数一半的平方即可得到结论【详解】A. 化为,正确,不符合题意;B. 化为,错误,符合题意;C. 化为,正确,不符合题意;D. 化为,错误,符合题意故选:BD【点睛】此题考查了配方法解一元二次方程,属于基础题,熟练掌握配方法的一般步骤是解题关键5、AC【解析】【分析】根据二次函数的性质,对称轴的性质,函数的增减性逐一判断即可【详解】

15、设抛物线与x轴的另一个交点的横坐标为, 线 封 密 内 号学级年名姓 线 封 密 外 二次函数y=a+ bx+c(a0)的图象过点(1,0),对称轴为直线x=2,4a+b=0,=5,抛物线与x轴的另一个交点是(5,0);故A,C两个选项正确;根据图像信息,得x=-2时,其函数值小于0,4a-2 b+c0即4a+c2b,故B选项错误;根据图像信息,当1x2时,y的值随x值的增大而增大,故D选项错误;故选AC【点睛】本题考查了二次函数的性质,对称轴的意义,抛物线与x轴的交点,函数的增减性,熟练掌握二次函数的性质是解题的关键三、填空题1、【解析】【分析】由题意得:二次函数的图像开口向上,进而,可得到

16、答案.【详解】二次函数的图像在它的对称轴右侧部分是上升的,二次函数的图像开口向上,.故答案是:【考点】本题主要考查二次函数图象和二次函数的系数之间的关系,掌握二次函数的系数的几何意义,是解题的关键.2、【解析】【分析】由二次函数y=ax2+bx+c的部分图象与y轴的交点为(0,3),即可判断;由抛物线的对称轴为直线x=1,即可判断;抛物线与x轴的一个交点在-1到0之间,抛物线对称轴为直线x=1,即可判断,由抛物线开口向下,得到a0,再由当x=-1时,即可判断【详解】解:二次函数y=ax2+bx+c的部分图象与y轴的交点为(0,3),c=3,故正确;抛物线的对称轴为直线x=1,即,故正确;抛物线

17、与x轴的一个交点在-1到0之间,抛物线对称轴为直线x=1,抛物线与x轴的另一个交点在2到3之间,故正确;抛物线开口向下,a0,当x=-1时,即,故错误, 线 封 密 内 号学级年名姓 线 封 密 外 故答案为:【考点】本题主要考查了二次函数图像的性质,解题的关键在于能够熟练掌握二次函数图像的性质3、【解析】【分析】由题意抛物线过点(40,0),顶点坐标为(20,10),设抛物线的解析式为,从而求出a的值,然后确定抛物线的解析式【详解】解:依题意得此函数解析式顶点为,设解析式为,又函数图象经过,.故答案为 .【考点】本题主要考查用待定系数法确定二次函数的解析式,解题时应根据情况设抛物线的解析式从

18、而使解题简单,此题设为顶点式比较简单.4、【解析】【分析】由旋转的性质可得BF=DE=2,D=ABF=90,在直角EFC中,由勾股定理可求解【详解】解:把ADE顺时针旋转90得ABF,BF=DE=2,D=ABF=90,ABC+ABF=180,点F,点B,点C共线,在直角EFC中,EC=6-2=4,CF=BC+BF=8根据勾股定理得:EF=,故答案为:【考点】本题考查了旋转的性质,正方形的性质,勾股定理,灵活运用这些性质解决问题是本题的关键5、【解析】【分析】仿造案例,构造面积是的大正方形,由它的面积为,可求出,此题得解【详解】解:即,构造如图中大正方形的面积是,其中它又等于四个矩形的面积加上中

19、间小正方形的面积,即, 线 封 密 内 号学级年名姓 线 封 密 外 据此易得故答案为【考点】本题考查了一元二次方程的应用,仿造案例,构造出合适的大正方形是解题的关键四、解答题1、 (1);(2);(3)m的值为3或1或2或7;【解析】【分析】(1)根据一元二次方程的解求出OB和OC的长度,然后得到点B,点C坐标和OA的长度,进而得到点A坐标,最后使用待定系数法即可求出直线AC的解析式;(2)根据点A,点B坐标使用待定系数法求出直线AB的解析式,根据直线AB解析式和直线AC解析式求出点P,Q,D坐标,进而求出PQ和CD的长度,然后根据三角形面积公式求出S,最后对a的值进行分类讨论即可;(3)根

20、据MAB的直角顶点进行分类讨论,然后根据勾股定理求解即可(1)解:解方程得,线段OB,OC()的长是关于x的方程的两个根,OB1,OC6,CO2AO,OA3,设直线AC的解析式为,把点,代入得,解得,直线AC的解析式为;(2)解:设直线AB的解析式为y=px+q,把,代入直线AB解析式得,解得,直线AB的解析式为,PDx轴,垂足为D,PD与直线AB交于点Q,点P的横坐标为a,当点P与点A或点C重合时,即当a=0或时,此时S=0,不符合题意,当时,当时, 线 封 密 内 号学级年名姓 线 封 密 外 当时,;(3)解:,当MAB=90时,解得,当ABM=90时,解得m=7,当AMB=90时,解得

21、,m的值为3或1或2或7【点睛】本题考查解一元二次方程、待定系数法求一次函数解析式、三角形面积公式、勾股定理,正确应用分类讨论思想是解题关键2、 (1)x12,x20(2)x1,x2【解析】【分析】(1)采用因式分解法即可求解;(2)直接用公式法即可求解(1)原方程左边因式分解,得:,即有:x12,x20;(2),【点睛】本题考查了用因式分解法和公式法解一元二次方程的知识,掌握求根公式是解答本题的关键3、 (1)x18,x2-4(2)x1-2,x2-2【解析】【分析】(1)用分解因式的方法解答,分解因式用十字相乘法分解; 线 封 密 内 号学级年名姓 线 封 密 外 (2)用配方法解答,配方前

22、先把-2移项,而后配方,等号左右斗殴配上一次项系数一半的平方(1)原方程可变形为(x-1-7)(x-1+5)0,x-80或x+40,x18,x2-4;(2)移项,得x2+4x2,配方,得x2+4x+46,即(x+2)26,两边开平方,得x+2,x1-2,x2-2【点睛】本题考查了用适当方法解一元二次方程,解决问题的关键是先考虑直接开平方法分解因式法,而后再考虑配方法或公式法4、4【解析】【分析】先根据一元二次方程根的判别式可得,从而可得,再代入计算即可得【详解】解:关于的一元二次方程有两个相等的实数根,此方程根的判别式,即,则,【点睛】本题考查了一元二次方程根的判别式、代数式求值,熟练掌握一元

23、二次方程根的判别式是解题关键5、(1)直线x=-1;(2)或;(3)当a0时,m4或m2;当a0时,4m2【解析】【分析】(1)利用二次函数的对称轴公式即可求得(2)根据题意可知顶点坐标,再利用待定系数法即可求出二次函数解析式(3)分类讨论当a0时和a0时二次函数的性质,即可求出m的取值范围【详解】(1)利用二次函数的对称轴公式可知对称轴故答案为:(2)抛物线顶点在x轴上,对称轴为,顶点坐标为(-1,0)将顶点坐标代入二次函数解析式得:,整理得:,解得:抛物线解析式为或(3)抛物线的对称轴为直线x-1, 线 封 密 内 号学级年名姓 线 封 密 外 N(2,y2)关于直线x-1的对称点为(-4,y2)根据二次函数的性质分类讨论()当a0时,抛物线开口向上,若y1y2,即点M在点N或的上方,则m-4或m2;()当a0时,抛物线开口向下,若y1y2,即点M在点N或的上方,则4m2【点睛】本题为二次函数综合题,掌握二次函数的性质是解答本题的关键

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 语文

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1