1、京改版八年级数学上册期中定向训练试题 B卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、下列分式,中,最简分式有()A1个B2个C3个D4个2、实数2021的相反数是()A2021BCD3、分式方程的解是
2、()A0B2C0或2D无解4、把四张形状大小完全相同的小长方形卡片(如图,卡片的长为,宽为)不重叠地放在一个底面为长方形(长为,宽为4)的盒子底部(如图),盒子底面未被卡片覆盖的部分用阴影表示,则图中两块阴影部分的周长和是()ABCD5、若把分式中的和同时扩大为原来的3倍,则分式的值()A扩大到原来的3倍B扩大到原来的6倍C缩小为原来的D不变二、多选题(5小题,每小题4分,共计20分)1、下列计算结果正确的是()ABCD2、在下列各数中,无理数为()A3.1415926BC0.2DEFG3、下列计算正确的是()ABCD4、已知,则的大小关系是()ABCD5、下列计算不正确的是()A(1)01B
3、CD用科学记数法表示0.00001081.08105第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、计算:=_;=_.2、如果分式有意义,那么x的取值范围是 _3、计算=_4、把分式化为最简分式为_5、若代数式在实数范围内有意义,则x的取值范围是_四、解答题(5小题,每小题8分,共计40分)1、先化简:,然后在的非负整数集中选取一个合适的数作为的值代入求值2、已知,求的算术平方根3、计算:(1)(2)4、计算:(1);(2);(3);(4)5、正数x的两个平方根分别为3a和2a+7(1)求a的值;(2)求44x这个数的立方根-参考答案-一、单选题1、B【解析】【分析】根
4、据最简分式的定义(分式的分子和分母除1以外没有其它的公因式,叫最简分式)逐个判断即可【详解】解:,故原式不是最简分式;是最简分式,是最简分式,故原式不是最简分式,最简分式有2个故选:B【考点】本题考查了最简分式的定义,能熟记最简分式的定义是解此题的关键2、B【解析】【分析】直接利用相反数的定义:只有符号不同的两个数互为相反数,即可得出答案【详解】解:2021的相反数是:故选:B【考点】本题主要考查相反数的定义,正确掌握其概念是解题关键3、D【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解【详解】去分母得,解得,经检验是增根,则分式方程无解故选
5、:D【考点】本题考查了解分式方程,利用了转化的思想,解分式方程注意要检验4、B【解析】【分析】分别求出较大阴影的周长和较小阴影的周长,再相加整理,即得出答案【详解】较大阴影的周长为:,较小阴影的周长为:,两块阴影部分的周长和为:= , 故两块阴影部分的周长和为16故选B【考点】本题考查了图形周长,整式加减的应用,利用数形结合的思想求出较大阴影的周长和较小阴影的周长是解题的关键5、D【解析】【分析】根据分式的基本性质即可求出答案【详解】解:,把分式中的和同时扩大为原来的3倍,则分式的值不变,故选:D【考点】本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质,本题属于基础题型二、多选题1、
6、BD【解析】【分析】根据二次根式的加减乘除运算法则,逐项分析判断.【详解】A、不是同类二次根式,不能合并,故错误;B、,正确;C、,故错误;D、,正确;故选:BD.【考点】本题考查二次根式的加减乘除运算法则,属于基础题型.2、DE【解析】【分析】根据无理数的概念:无限不循环小数,进行逐一判断即可得到答案【详解】解:A. 3.1415926是有限小数,是有理数,故不符合题意;B. 是有理数,故不符合题意;C. 0.2是小数,是有理数,故不符合题意D. 是无理数,故符合题意;E. 是无理数,故符合题意;F. 是分数,是有理数,故不符合题意;G. 是整数,是有理数,故不符合题意;故选DE【考点】本题
7、主要考查了无理数的概念,解题的关键在于能够熟练掌握有理数,无理数的概念,立方根和算术平方根的计算方法3、BC【解析】【分析】直接利用二次根式的加减运算法则分别计算得出答案【详解】解:A、,故此选项不符合题意;B、,故此选项符合题意;C、,故此选项符合题意;D、,故此选项不符合题意;故选BC【考点】此题主要考查了二次根式的加减,正确掌握相关运算法则是解题关键4、AD【解析】【分析】先根据幂的运算法则进行计算,再比较实数的大小即可得出结论【详解】 故不符合题意,符合题意,故选择:AD【考点】此题主要考查幂的运算,解题的关键是正确理解零指数幂以及负指数幂的运算法则5、ABCD【解析】【分析】根据负整
8、数指数幂和科学计算法的计算方法进行求解判断即可【详解】解:A、,故此选项符合题意;B、,故此选项符合题意;C、,故此选项符合题意;D、用科学记数法表示,故此选项符合题意;故选ABCD【考点】本题主要考查了负整数指数幂和科学计算法,解题的关键在于能够熟练掌握相关计算法则三、填空题1、 3【解析】【分析】能化简的先化简二次根式,再进行二次根式的乘除运算.【详解】解:(1)=;(2)=3.故答案为(1). (2). 3【考点】此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键2、x1【解析】【分析】根据分式有意义的条件分母不为0,即可解答【详解】若分式有意义,则,解得:故答案为:【考点】本
9、题考查使分式有意义的条件掌握分式的分母不能为0是解题关键3、-2【解析】【分析】原式利用除法法则变形,约分即可得到结果【详解】解:原式=-2,故答案为:-2【考点】本题考查了分式的除法,熟练掌握运算法则是解本题的关键4、【解析】【分析】根据分式的性质,进行约分即可,最简分式定义,一个分式的分子与分母没有非零次的公因式或公因数时叫最简分式【详解】故答案为:【考点】本题考查了最简分式,掌握分式的约分,因式分解是解题的关键5、x3【解析】【分析】本题考查二次根式是否有意义以及分式是否有意义,按照对应自变量要求求解即可【详解】因为二次根式有意义必须满足被开方数为非负数所以有又因为分式分母不为零所以故综
10、上: 则:故答案为:x3【考点】二次根式以及分式的结合属于常见组合,需要着重注意分母不为零的隐藏陷阱四、解答题1、2a,当a=0时,原式=2,当a=2时,原式=0【解析】【分析】原式的括号内根据平方差和完全平方公式化简约分,括号外根据分式的除法法则即可化简原式,最后a的负整数解是0,1,2,注意分式的分母不能为零,所以a不能取1【详解】原式=1-a+1=2-a不等式的非负整数解是0,1,2,分式分母不能为零,a不取1当a=0时,原式=2,或当a=2时,原式=0【考点】本题考查了分式的混合运算,平方差和完全平方公式,除法法则等知识,要注意分式的分母不能为零2、【解析】【分析】根据算术平方根的定义
11、可得解不等式组,求出a,b,代入求值即可【详解】解:根据题意,得则,2,的算术平方根为【考点】本题考核知识点:算术平方根,解不等式组理解算术平方根定义和解不等式组方法是关键3、 (1)(2)【解析】【分析】(1)根据绝对值的性质、立方根的定义进行计算;(2)根据算术平方根的性质、绝对值的性质、立方根的定义以及乘方得到结果(1)解:原式 ;(2)解:原式 【考点】本题考查了实数的综合运算能力,解决此题的关键是熟练掌握绝对值、算术平方根和立方根的运算4、(1)2;(2);(3);(4)1【解析】【分析】(1)根据同分母分式的加减和整式的加减计算法则进行求解即可;(2)根据同分母分式的加减和整式的加
12、减计算法则进行求解即可;(3)根据异分母分式的加减和整式的加减计算法则进行求解即可;(4)根据同分母分式的加减和整式的加减计算法则进行求解即可【详解】解:(1);(2);(3);(4)【考点】本题主要考查了分式的加减和整式的加减,解题的关键在于能够熟练掌握相关计算法则5、(1) a10;(2)44x的立方根是5【解析】【分析】(1)理解一个正数有几个平方根及其两个平方根间关系:一个正数有两个平方根,它们互为相反数,求出a的值;(2)根据a的值得出这个正数的两个平方根,即可得出这个正数,计算出44-x的值,再根据立方根的定义即可解答.【详解】解:(1)由题意得:3a2a70,a10,(2)由(1)可知a10,x169,则44x125,44x的立方根是-5.【考点】此题考查了立方根,平方根,注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根