1、京改版七年级数学上册第三章简单的几何图形综合练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列图形是正方体展开图的个数为()A1个B2个C3个D4个2、如图,是一个几何体的表面展开图,则该几何体中写
2、“英”的面相对面上的字是()A战B疫C情D颂3、一个六棱柱,底面边长都是厘米,侧棱长为厘米,这个六棱柱的所有侧面的面积之和是()ABCD4、如图,下列各组角中,表示同一个角的是()A与B与C与D与5、 “枪挑一条线,棍扫一大片”,从数学的角度解释为()A点动成线,线动成面B线动成面,面动成体C点动成线,面动成体D点动成面,面动成线6、下列语句中:正确的个数有()(1)画直线AB3cm;(2)A、B两点之间的距离,就是连接点A与点B的线段;(3)两条射线组成的图形叫角; (4)若BOCAOC,则OB是AOC的平分线;A0B1C2D37、如图所示,与不是同一个角的是()ABCD8、永定河,“北京的
3、母亲河”近年来,我区政府在永定河治理过程中,有时会将弯曲的河道改直,图中A,B两地间的河道改直后大大缩短了河道的长度这一做法的主要依据是()A两点确定一条直线B垂线段最短C过一点有且只有一条直线与已知直线垂直D两点之间,线段最短9、如图,钟表上显示的时间是,此时,时针与分针的夹角是()ABCD10、在同一平面内,设a、b、c是三条互相平行的直线,已知a与b的距离为4cm,b与c的距离为1cm,则a与c的距离为()A1cmB3cmC5cm或3cmD1cm或3cm第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,若,则_AD,_AC,_AE,_CD2、自来水公司为某小区
4、A改造供水系统,如图沿路线AO铺设管道和BO主管道衔接(AOBO),路线最短,工程造价最低,根据是_3、如图,的平分线交于点,是上的一点,的平分线交于点,且,下列结论:平分;与互余的角有个;若,则其中正确的是_(请把正确结论的序号都填上)4、直角三角形纸片绕它的直角边所在的直线旋转一周,得到的几何体是_.5、已知点是线段上一点,且,比长,则长为_三、解答题(5小题,每小题10分,共计50分)1、设棱锥的顶点数为 ,面数为,棱数为(1)观察与发现:如图,三棱锥中, , , ;五棱锥中, , , (2)猜想:十棱锥中, , , ; 棱锥中, , , (用含有 的式子表示)(3)探究:棱锥的顶点数(
5、)与面数()之间的等量关系: ;棱锥的顶点数()、面数()、棱数()之间的等量关系: (4)拓展:棱柱的顶点数()、面数()、棱数()之间是否也存在某种等量关系?若存在,试写出相应的等式;若不存在,请说明理由2、如图是由7个大小相同的小立方块搭成的一个几何体,请画出该几何体分别从上面、左面看到的形状图3、如图,两个形状、大小完全相同的含有30、60的直角三角板如图放置,PA、PB与直线MN重合,且三角板PAC、三角板PBD均可绕点P逆时针旋转(1)试说明DPC=90;(2)如图,若三角板PBD保持不动,三角板PAC绕点P逆时针旋转旋转一定角度,PF平分APD,PE平分CPD,求EPF;(3)如
6、图在图基础上,若三角板PAC开始绕点P逆时针旋转,转速为5/秒,同时三角板PBD绕点P逆时针旋转,转速为1/秒,(当PA转到与PM重合时,两三角板都停止转动),在旋转过程中,PC、PB、PD三条射线中,当其中一条射线平分另两条射线的夹角时,请求出旋转的时间4、如图,AOB内有一点P 根据下列语句画图:(1)过点P作OB的垂线段,垂足为Q ;(2)过点P作线段PCOB交OA于点C,作线段PDOA交OB于点D ;(3)如果O = 40,那么DPQ = ;(4)比较PQ和PD的大小:PQ PD,依据是 5、下列是我们常见的几何体,按要求将其分类(只填写编号)(1)如果按“柱”“锥球”来分,柱体有_,
7、椎体有_,球有_;(2)如果按“有无曲面”来分,有曲面的有_,无曲面的有_-参考答案-一、单选题1、C【解析】【分析】根据正方体的展开图的特征,11种不同情况进行判断即可【详解】解:根据正方体的展开图的特征,只有第2个图不是正方体的展开图,故四个图中有3个图是正方体的展开图故选:C【考点】考查正方体的展开图的特征,“一线不过四,田凹应弃之”应用比较广泛简洁2、B【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“战”与“情”是相对面,“疫”与“英”是相对面,“颂”与“雄”是相对面故选:B【考点】本
8、题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手分析是解题的关键3、C【解析】【分析】根据六棱柱侧面积的公式等于6个矩形面积之和,代入数据即可解出答案【详解】 底面边长都是,侧棱长为,六棱柱侧面积为:故选:C【考点】本题考查了几何体的表(侧)面积,熟练掌握几何体侧面积的求法是解题的关键4、B【解析】【分析】根据角的表示方法,用三个字母表示角,顶点字母写在中间,例如AOC表示该角是射线OA和线段OC的夹角,据此分析即可【详解】A. 表示射线的夹角,表示射线的夹角,不是同一个角,不符合题意;B. 表示射线的夹角,表示射线的夹角,是同一个角,符合题意;C. 表示射线的夹角,表
9、示射线的夹角,不是同一个角,不符合题意;D. 表示射线的夹角,表示射线的夹角,不是同一个角,不符合题意故选B【考点】本题考查了角的表示方法,理解三个字母表示角的方法是解题的关键5、A【解析】【分析】根据从运动的观点来看点动成线,线动成面进行解答即可【详解】“枪挑”是用枪尖挑,枪尖可看作点,棍可看作线,故这句话从数学的角度解释为点动成线,线动成面故选A【考点】本题考查了点、线、面得关系,难度不大,注意将生活中的实物抽象为数学上的模型6、A【解析】【分析】根据直线,线段,角和角平分线的定义进行逐一判断即可得到答案【详解】解:直线是没有端点,两端可以无限延伸,直线没有长度,故(1)说法错误;A、B两
10、点之间的距离,就是连接点A与点B的线段的长度,故(2)说法错误;两条有公共端点的射线组成的图形是角,故(3)说法错误;若BOCAOC,且B在AOC内则OB是AOC的平分线,故(4)说法错误;故选A【考点】本题主要考查了直线,线段,角和角平分线的定义,解题的关键在于能够熟练掌握相关定义7、D【解析】【分析】根据角的概念和角的表示方法,依题意求得答案【详解】解:除了,其他三种表示方法表示的都是同一个角故选:D【考点】利用了角的概念求解从一点引出两条射线组成的图形就叫做角角的表示方法一般有以下几种:1、角+3个大写英文字母;2、角+1个大写英文字母;3、角+小写希腊字母;4、角+阿拉伯数字8、D【解
11、析】【分析】根据线段的性质分析得出答案【详解】由题意中改直后A,B两地间的河道改直后大大缩短了河道的长度,其注意依据是:两点之间,线段最短,故选:D【考点】此题考查线段的性质:两点之间线段最短,掌握题中的改直的结果是大大缩短了河道的长度的含义是解题的关键9、B【解析】【分析】根据时针在钟面上每分钟转,分针每分钟转,然后分别求出时针、分针转过的角度,即可得到答案【详解】解:时针在钟面上每分钟转,分针每分钟转,钟表上12时20分钟时,时针转过的角度为,分针转过的角度为,所以时分针与时针的夹角为故选B【考点】本题主要考查了钟面角,解题的关键在于能够熟练掌握时针和分针每分钟所转过的角度是多少10、C【
12、解析】【详解】分析:分类讨论:当直线c在a、b之间或直线c不在a、b之间,然后利用平行线间的距离的意义分别求解详解:当直线c在a、b之间时,a、b、c是三条平行直线,而a与b的距离为4cm,b与c的距离为1cm,a与c的距离=4-1=3(cm);当直线c不在a、b之间时,a、b、c是三条平行直线,而a与b的距离为4cm,b与c的距离为1cm,a与c的距离=4+1=5(cm),综上所述,a与c的距离为3cm或5cm故选C点睛:本题考查了平行线之间的距离,从一条平行线上的任意一点到另一条直线作垂线,垂线段的长度叫两条平行线之间的距离平行线间的距离处处相等注意分类讨论二、填空题1、 2 3【解析】【
13、分析】根据AB=BC=CD=DE得到线段之间的数量关系即可推出结论【详解】AB=BC=CD=DE,AD=3AB,AE=4AB,AC=2AB,BE=3AB,故答案为:,2,3【考点】本题考查了线段,弄清线段之间的数量关系是解题的关键2、垂线段最短【解析】【分析】根据垂线段的性质解答即可.【详解】解:根据是:直线外一点与直线上各点连接而得到的所有线段中,垂线段最短故答案为垂线段最短.【考点】本题考点:垂线段的性质.3、【解析】【分析】由BDBC及BD平分GBE,可判断正确;由CB平分ACF、AECF及的结论可判断正确;由前两个的结论可对作出判断;由AECF及ACBG、三角形外角的性质可求得BDF,
14、从而可对作出判断【详解】BD平分GBEEBD=GBD=GBEBDBCGBD+GBC=CBD=90DBE+ABC=90GBC=ABCBC平分ABG故正确CB平分ACFACB=GCBAECFABC=GCBACB=GCB=ABC=GBCACBG故正确DBE+ABC=90,ACB=GCB=ABC=GBC与DBE互余的角共有4个 故错误ACBG,A=GBE=AECFBGD=180GBE=180BDF=GBD+BGD=故错误即正确的结论有故答案为:【考点】本题考查了平行线的判定与性质,互余概念,垂直的定义,角平分线的性质等知识,掌握这些知识并正确运用是关键4、圆锥【解析】【分析】根据:面动成体,将直角三角
15、形纸片绕它的直角边所在的直线旋转一周,得到的几何体是圆锥【详解】解:将直角三角形纸片绕它的直角边所在的直线旋转一周,得到的几何体是圆锥故答案为:圆锥【考点】本题考查几何体, 解题的关键是有一定的空间想象能力,理解面动成体5、【解析】【分析】由,可得比多份,比长,从而可得每一份为,于是可得答案【详解】解:故答案为:【考点】本题考查的是部分与总体的关系,线段的和差关系,理解题意弄清楚部分与整体的比值是解题的关键三、解答题1、 (1)4,4,6,6,6,10;(2)11,11,20,(3),(4)存在,相应的等式为:【解析】【分析】(1)观察与发现:根据三棱锥、五棱锥的特征填写即可(2)猜想:根据十
16、棱锥的特征填写即可,根据n棱锥的特征的特征填写即可(3)探究:通过列举得到棱锥的顶点数(V)与面数(F)之间的等量关系,通过列举得到棱锥的顶点数(V)、面数(F)、棱数(E)之间的等量关系(4)拓展:根据棱柱的特征得到棱柱的顶点数(V)、面数(F)、棱数(E)之间的等量关系(1)解:三棱锥中,V3=4,F3=4,E3=6,五棱锥中,V5=6,F5=6,E5=10(2)解:十棱锥中,V10=11,F10=11,E10=20;n棱锥中,Vn=n+1,Fn=n+1,En=2n(3)解:棱锥的顶点数(V)与面数(F)之间的等量关系:V=F,棱锥的顶点数(V)、面数(F)、棱数(E)之间的等量关系:E=
17、V+F2(4)解:棱柱的顶点数(V)、面数(F)、棱数(E)之间也存在某种等量关系,相应的等式是:V+FE=2【考点】本题主要考查了立体几何的点、棱、面,熟知对应的立体图形的特征是解决本题的关键2、见解析【解析】【分析】由题意观察图形可知,从上面看到的图形是3列,从左往右正方形个数依次是2,1,1;从左面看到的图形是2列,从左往右正方形个数依次是3,1;据此即可画图.【详解】解:作图如下:【考点】本题主要考查从不同方向看得到的图形的画法,正确利用观察角度不同分别得出符合题意的图形是解题的关键3、(1)见解析;(2);(3)旋转时间为15秒或秒时,PB、PC、PD其中一条射线平分另两条射线的夹角
18、【解析】【分析】(1)结合题意利用直角三角形的两个锐角互余,即可证明(2)结合题意根据角平分线的定义,利用各角之间的等量关系即可求解(3)设t秒时,其中一条射线平分另两条射线的夹角根据题意求出t的取值范围,再根据情况讨论,利用数形结合的思想列一元一次方程,求解即可【详解】(1)两个三角板形状、大小完全相同,又,(2)根据题意可知,又,(3)设t秒时,其中一条射线平分另两条射线的夹角,当PA转到与PM重合时,两三角板都停止转动,秒分三种情况讨论:当PD平分时,根据题意可列方程,解得t=15秒36秒,符合题意当PC平分时,根据题意可列方程,解得t=秒36秒,不符合题意舍去所以旋转时间为15秒或秒时
19、,PB、PC、PD其中一条射线平分另两条射线的夹角【考点】本题考查直角三角形的性质,角平分线的定义,图形的旋转掌握图形旋转的特征,找出其等量关系来列方程求解是解答本题的关键4、(1)见解析;(2)见解析;(3) ;(4);垂线段最短【解析】【分析】(1)利用三角板的直角,过点P作OAPQ即可; (2)过点P画线段PCOB交OA于点C,画线段PDOA交OB于点D即可;(3)利用平行线的性质和三角形内角和定理即可求解(4)根据直线外一点与直线上所有点的连线中垂线段距离最短即可求解.【详解】如图:(2)如图: (3)AOPD, O=ODP=40, PQBO, PQD=90, DPQ=50, 故答案为
20、:50(4)因为PQBO,所以;点到直线上所有连线中,垂线段距离最短.故答案为:垂线段最短.【考点】本题主要考查了基本作图的中的垂线和平行线的作法以及作一个角等于已知角,要求能够熟练地运用尺规作图,并保留作图痕迹5、 (1);(2);【解析】【分析】(1)根据立体图形的特点从柱体的形状特征考虑(2)根据面的形状特征考虑(1)解:(1)是四棱柱,(2)是圆柱,(3)是圆锥,(4)是棱锥,(5)是球,(6)是三棱柱,柱体有(1),(2),(6),锥体有(3),(4),球有(5),故答案为:(1),(2),(6);(3),(4);(5);(2)(2)(3)(5)有曲面,其它几何体无曲面,按“有无曲面”来分,有曲面的有(2),(3),(5),无曲面的有:(1),(4),(6),故答案为:(2),(3),(5);(1),(4),(6)【考点】本题考查了认识立体图形,解决本题的关键是认识柱体的形状特征