1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版数学八年级上册期末专项测评试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、如图,AB和CD相交于点O,则下列结论正确的是()A12B23C3
2、4D152、计算(a+3)(a+1)的结果是()Aa22a+3Ba2+4a+3Ca2+4a3Da22a33、如图,与相交于点O,不添加辅助线,判定的依据是()ABCD4、将正六边形与正五边形按如图所示方式摆放,公共顶点为O,且正六边形的边AB与正五边形的边DE在同一条直线上,则COF的度数是()A74B76C84D865、下列电视台标志中是轴对称图形的是()ABCD二、多选题(5小题,每小题4分,共计20分)1、下列各式中,当x取某一值时没有意义的是() 线 封 密 内 号学级年名姓 线 封 密 外 ABCD2、如图,EADF,AE=DF,要使AECDFB,可以添加的条件有()AAB=CDBA
3、C=BDCA=DDE=F3、如下书写的四个汉字,其中不是轴对称图形的是()ABCD4、下列分式变形正确的是()ABCD5、下列运算不正确的是()ABCD第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、若长度分别为3,4,a的三条线段能组成一个三角形,则整数a的值可以是_(写出一个即可)2、如图,中,点D、点E分别在边、上,连结、,若,且的周长比的周长大6则的周长为_3、计算:_4、_5、如果分式值为零,那么x_四、解答题(5小题,每小题8分,共计40分)1、如图,在ABC中,ACB90,用直尺和圆规在斜边AB上作一点P,使得点P到点B的距离与点P到边AC的距离相等(保留
4、作图痕迹,不写作法)2、计算:(1)(2)3、(1)解方程:(2)计算:4、计算: 线 封 密 内 号学级年名姓 线 封 密 外 5、如图,一个三角形的纸片ABC,其中A=C,(1)把ABC纸片按 (如图1) 所示折叠,使点A落在BC边上的点F处,DE是折痕说明 BCDF;(2)把ABC纸片沿DE折叠,当点A落在四边形BCED内时 (如图2),探索C与1+2之间的大小关系,并说明理由;(3)当点A落在四边形BCED外时 (如图3),探索C与1、2之间的大小关系.(直接写出结论)-参考答案-一、单选题1、A【解析】【分析】根据平行线的性质和对顶角的性质进行判断【详解】解:A、1与2是对顶角,12
5、,本选项说法正确;B、AD与AB不平行,23,本选项说法错误;C、AD与CB不一定平行,34,本选项说法错误;D、CD与CB不平行,15,本选项说法错误;故选:A【考点】本题考查平行线的应用,熟练掌握平行线的性质和对顶角的意义与性质是解题关键2、A【解析】【分析】运用多项式乘多项式法则,直接计算即可【详解】解:(a+3)(a+1)a23a+a+3a22a+3故选:A【考点】本题主要考查多项式乘多项式,解题的关键是掌握多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加3、B【解析】【分析】根据,正好是两边一夹角,即可得出答案【详解】 线
6、 封 密 内 号学级年名姓 线 封 密 外 解:在ABO和DCO中,故B正确故选:B【考点】本题主要考查了全等三角形的判定,熟练掌握两边对应相等,且其夹角也对应相等的两个三角形全等,是解题的关键4、C【解析】【分析】利用正多边形的性质求出EOF,BOC,BOE即可解决问题【详解】解:由题意得:EOF108,BOC120,OEB72,OBE60,BOE180726048,COF3601084812084,故选:【考点】本题考查正多边形,三角形内角和定理等知识,解题的关键是熟练掌握基本知识5、A【解析】【分析】根据轴对称图形的定义进行判断,即一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,
7、这个图形就叫做轴对称图形【详解】解:A选项中的图形是轴对称图形,对称轴有两条,如图所示;B、C、D选项中的图形均不能沿某条直线折叠,直线两旁的部分能够互相重合,因此,它们都不是轴对称图形;故选:A【考点】本题考查了轴对称图形的概念,其中正确理解轴对称图形的概念是解题关键二、多选题1、ABC【解析】【分析】根据分式有意义,分母不等于0对各选项分析判断即可得解【详解】解:A、当x=-即2x+1=0时,分式无意义,故本选项符合题意;B、当x=-即2x+1=0时,分式无意义,故本选项符合题意;C、当x=0即=0时,分式无意义,故本选项符合题意;D、无论x取何值,2x2+11,分式都有意义,故本选项不符
8、合题意; 线 封 密 内 号学级年名姓 线 封 密 外 故选:ABC【考点】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义分母为零;(2)分式有意义分母不为零2、ABD【解析】【分析】由AEDF可得A=D,要判定AECDFB,已知一边一角,根据三角形全等的判定方法,如果要加边相等,只能是AC=DB(或AB=CD);如果要加角相等,可以是E=F或者是ACE=DBF,结合四个选项即可求解【详解】解:AEDF,A=D,A、AB=CD,AB+BC=CD+BC,即AC=DB,又AE=DF,A=D,根据SAS能推出AECDFB,故本选项符合题意;B、AC=BD,AE=DF,
9、A=D,根据SAS能推出AECDFB,故本选项符合题意;C、A=D,AE=DF,不能推出AECDFB,故本选项不符合题意;D、E=F,AE=DF,A=D,根据ASA能推出AECDFB,故本选项符合题意;故选:ABD【考点】本题考查了全等三角形的判定定理和平行线的性质,能熟记全等三角形的判定定理的内容是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS3、ACD【解析】【分析】轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形【详解】解:根据轴对称图形的定义可得只有“善”是轴对称图形,“上”、“若”、“水”不是轴对称图形故选AC
10、D【考点】本题考查轴对称图形的定义,本题属于基础应用题,只需学生熟练掌握轴对称图形的定义,即可完成4、ABC【解析】【分析】依据分式变形的原则,上下同乘同一个不为0的数,不改变原分式大小依次进行判断即可【详解】 ,故A正确 ,故B正确 线 封 密 内 号学级年名姓 线 封 密 外 ,故C正确 ,故D错误故选ABC【考点】本题考查了分式的性质,熟练使用分式的性质对分式进行变形是解决本题的关键5、ABC【解析】【分析】根据整式的混合运算法则分别计算即可【详解】解:A、,错误,符合题意;B、,错误,符合题意;C、,错误,符合题意;D、,正确,不符合题意;故选:ABC【考点】本题考查了同类项,完全平方
11、公式,同底数幂除法,幂的乘方等知识点,熟练掌握运算法则是解本题的关键三、填空题1、5(答案不唯一)【解析】【分析】根据三角形的任意两边之和大于第三边,任意两边之差小于第三边进行求解即可【详解】解:由题意知:43a4+3,即1a7,整数a可取2、3、4、5、6中的一个,故答案为:5(答案不唯一)【考点】本题考查三角形的三边关系,能根据三角形的三边关系求出第三边a的取值范围是解答的关键2、12【解析】【分析】设AC=4a,AB=6a,BC=8a,根据全等三角形的性质得到AD=BD,AE=BE,再设AE=BE=x,则EC=8a-x,由题意得方程18a-12a=6,即可求解【详解】解:AC:AB:BC
12、=2:3:4,设AC=4a,AB=6a,BC=8a,ADEBDE,AD=BD,AE=BE,再设AE=BE=x,则EC=8a-x,ABC的周长= AC+AB+BC=4a+6a +8a=18a,AEC的周长= AC+AE+EC=4a+x +8a-x=12a,由题意得:18a-12a=6,解得:a=1,AEC的周长为12, 线 封 密 内 号学级年名姓 线 封 密 外 故答案为:12【考点】本题考查了全等三角形的性质,解一元一次方程,正确的识别图形是解题的关键3、【解析】【分析】先分别化简负整数指数幂和绝对值,然后再计算【详解】,故填:【考点】本题考查负整数指数幂及实数的混合运算,掌握运算法则准确计
13、算是解题关键4、【解析】【分析】由平方差公式进行计算,即可得到答案【详解】解:;故答案为:【考点】本题考查了平方差公式,解题的关键是熟练掌握平方差公式进行计算5、1【解析】【分析】直接利用分式的值为零在分子为零进而得出答案【详解】解:分式值为零,x10,解得:x1故答案为:1【考点】此题主要考查了分式的值为零的条件,正确把握定义是解题关键四、解答题1、详见解析【解析】【分析】先作ABC的角平分线BD,再过点D作AC的垂线交AB于P,则利用PDBC得到PDBCBD,于是可证明PDBCBD,所以PBPD【详解】解:如图,点P为所作 线 封 密 内 号学级年名姓 线 封 密 外 【考点】此题主要考查
14、尺规作图,解题的关键是熟知角平分线的作法与平行线的性质.2、(1)27;(2)【解析】【分析】(1)首先计算乘方、除法和负指数幂,然后进行加减计算即可;(2)按照幂的运算法则计算,再合并同类项【详解】解:(1)=27;(2)=【考点】本题主要考查了有理数的混合运算,整式的混合运算,熟练掌握实数以内的各种运算法则,是解题的关键3、(1)原分式方程无解(2)【解析】【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)首先将式子通分,化成同分母,分子合并同类项即可【详解】解:(1) 经检验:是增根所以原方程无解(2)原式= =【考点】本题考查了解
15、分式方程和分式的化简,解题的关键是熟练掌握分式方程的解法和分式的化简运算法则4、【解析】 线 封 密 内 号学级年名姓 线 封 密 外 【分析】根据实数的混合运算法则进行计算即可【详解】解:原式=【考点】本题考查实数的混合运算,应用到负指数幂、零指数幂、绝对值、算数平方根等知识,掌握这些知识为解题关键5、(1)见解析;(2)122C;(3)122C.【解析】【分析】(1)根据折叠的性质得DFE=A,由已知得A=C,于是得到DFE=C,即可得到结论;(2)先根据四边形的内角和等于360得出A+A=1+2,再由图形翻折变换的性质即可得出结论;(3)AED=AED(设为),ADE=ADE(设为),于
16、是得到2+2=180,1=-BDE=-(A+),推出2-1=180-(+)+A,根据三角形的内角和得到A=180-(+),证得2-1=2A,于是得到结论【详解】解:(1) 由折叠知A=DFE,A=C,DFE=C,BCDF;(2)122A.理由如下:12AED180,22ADE180,122(ADEAED)360.AADEAED180,ADEAED180A,122(180A)360,即122C.(3)122A.2AED1180,2ADE2180,2(ADEAED)12360.AADEAED180,ADEAED180A,122(180A)360,即122C.【考点】考查了翻折变换的性质,三角形的一个外角等于与它不相邻的两个内角的和,三角形的内角和等于180,综合题,但难度不大,熟记性质准确识图是解题的关键