1、人教版七年级数学上册第二章整式的加减综合训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、式子,0,a,中,下列结论正确的是()A有4个单项式,2个多项式B有3个单项式,3个多项式C有5个整式D以上答案
2、均不对2、如图,填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m的值应是()A110B168C212D2223、下列各组中的两项,不是同类项的是()A-x2y和2x2yB23和32C-m3n2与m2n3D2R与2R4、观察下面由正整数组成的数阵:照此规律,按从上到下、从左到右的顺序,第51行的第1个数是()A2500B2501C2601D26025、观察下列等式:717,7249,73343,742401,7516807,76117649,根据其中的规律可得71+72+72020的结果的个位数字是()A0B1C7D86、下列代数式中单项式共有()A2个B4个C6个D8个7、下列说
3、法错误的是()A单项式h的系数是1B多项式a-2.5的次数是1Cm+2和3都是整式D是六次单项式8、若多项式的值为2,则多项式的值是()A11B13C-7D-59、如果2x2yn与5xm1y的和是单项式,那么m,n的值分别是Am=2,n=1Bm=1,n=2Cm=3,n=1Dm=3,n=210、()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、观察下列一组数:,根据该组数的排列规律,可以推出第8个数是_2、有一列数按如下规律排列:,则第2022个数是 _3、已知,且对于任意有理数,代数式 的值不变,则的值是_4、在多项式中,与_是同类项,与_是同类项,与_也是同
4、类项,合并后是_5、若代数式的值与字母无关,则的值为_三、解答题(5小题,每小题10分,共计50分)1、探究规律题:按照规律填上所缺的单项式并回答问题:(1)a,2a2,3a3,4a4, , ;(2)试写出第2017个和第2018个单项式;(3)试写出第n个单项式;(4)当a1时,求代数式a+2a2+3a3+4a4+99a99+100a100+101a101的值2、如图,一个点从数轴上的原点开始,先向左移动3cm到达A点,再向右移动4cm到达B点,然后再向右移动到达C点,数轴上一个单位长度表示1cm(1)请你在数轴上表示出A,B,C三点的位置;(2)把点C到点A的距离记为CA,则CA=_cm(
5、3)若点A沿数轴以每秒3cm匀速向右运动,经过多少秒后点A到点C的距离为3cm?(4)若点A以每秒1cm的速度匀速向左移动,同时点B、点C分别以每秒4cm、9cm的速度匀速向右移动设移动时间为t秒,试探索:的值是否会随着t的变化而改变?若变化,请说明理由,若无变化,请直接写出的值3、已知,试求:(1)的值;(2)的值4、已知(1)求;(2)求;(3)如果,那么C的表达式是什么?5、先化简,再求值:,其中,-参考答案-一、单选题1、A【解析】【分析】数与字母的乘积形式是单项式,单独一个数或一个字母是单项式,几个单项式的和是多项式【详解】解:是两个单项式的和,是多项式;是单项式;是3个单项式的和,
6、是多项式:0,a是单项式;是单项式;不是整式,综上所述,单项式共有4个,多项式共有2个,整式共有6个,故选:A【考点】本题考查多项式、单项式的定义,是基础考点,掌握相关知识是解题关键2、C【解析】【分析】观察不难发现,左上角、左下角、右上角为三个连续的偶数,右下角的数是左下角与右上角两个数的乘积减去左上角的数的差,根据此规律先求出阴影部分的两个数,再列式进行计算即可得解【详解】解:根据排列规律,12下面的数是14,12右面的数是16,8240,22462,44684,m161412212,故选:C【考点】本题是对数字变化规律的考查,仔细观察前三个图形,找出四个数之间的变化规律是解题的关键3、C
7、【解析】【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)即可作出判断【详解】解:A、-x2y和2x2y所含字母相同,相同字母的指数相同,是同类项;B、23和32,都是整数,是同类项;C、-m3n2与m2n3,所含字母相同,相同字母的指数不同,不是同类项;D、2R与2R,所含字母相同,相同字母的指数相同,是同类项;故选C【考点】本题考查了同类项定义,同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了中考的常考点4、B【解析】【分析】观察这个数列知,第n行的最后一个数是n2,第50行的最后一个数是502=2500,进而求出第51行的第1个数【详
8、解】由题意可知,第n行的最后一个数是n2,所以第50行的最后一个数是502=2500,第51行的第1个数是2500+1=2501,故选:B【考点】本题考查了规律型:数字的变化类,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题解决本题的难点在于发现第n行的最后一个数是n2的规律5、A【解析】【分析】根据题意可知个位数字按照7、9、3、1每四个一循环,每四个数字的个位数所得和为20,进而问题可求解【详解】解:由717,7249,73343,742401,7516807,76117649,可知个位数字按照7、9、3、1每四个一循环,每四个数字的个位数所得和为7+9+3+1=20
9、,即和的个位数为0,20204=505,71+72+72020的结果的个位数字是0;故选A【考点】本题主要考查数字规律,解题的关键是得到个位数的循环及和6、C【解析】【分析】根据单项式的定义,即可得到答案【详解】解:中,单项式有,共6个,故选C【考点】本题主要考查单项式的定义,掌握“数字和字母,字母和字母的乘积叫做单项式,单独的字母和数字也叫单项式”是解题的关键7、D【解析】【分析】如果两个单项式,他们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项【详解】A、B、C说法均是正确的,D中是四次单项式【考点】本题考察单项式知识的相关应用8、D【解析】【分析】将多项式变形
10、为,再将整体代入即可得解;【详解】解: ,=,故选择:D【考点】本题主要考查代数式的求值,利用整体代入思想求解是解题的关键9、C【解析】【分析】两个单项式的和为单项式,则这两个单项式是同类项,再根据同类项的定义列出关于m,n的方程组,即可求出m,n的值.【详解】2x2yn与5xm1y的和是单项式,则2x2yn与5xm1y是同类项, 解得:m=3,n=1故选C.【考点】考查同类项的概念,掌握两个单项式的和为单项式,则这两个单项式是同类项是解题的关键.10、A【解析】【分析】根据去括号法则解答【详解】解:2+2x故选:A【考点】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括
11、号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“-”,去括号后,括号里的各项都改变符号二、填空题1、【解析】【分析】由分子1,2,3,4,5,即可得出第n个数的分子为n;分母为3,5,7,9,11,即可得出第n个数的分母为:2n+1,即可得出结果【详解】解:分子为1,2,3,4,5,第n个数的分子为n,分母为3,5,7,9,11,第n个数的分母为2n+1,第8个数为:,故答案为:【考点】本题主要考查代数式的数字规律,关键是根据题意得到数字的规律,进而求解2、【解析】【分析】根据前4个数归纳类推出一般规律,由此即可得【详解】解:第1个数为,第2个数为,第3个数为
12、,第4个数为,归纳类推得:第个数为,其中为正整数,则第2022个数是,故答案为:【考点】本题考查了数字类规律探索,正确归纳类推出一般规律是解题关键3、-2【解析】【分析】先根据代数式为定值求出a,b的值及的值,然后对所求代数式进行变形,然后代入计算即可.【详解】对于任意有理数,代数式 的值不变, 原式= 故答案为:-2【考点】本题主要考查代数式的求值,能够对代数式进行化简,变形是解题的关键.4、 5 【解析】【分析】根据同类项的定义分别进行判断即可,再根据合并同类项的法则即可求出结果【详解】解:在多项式中,根据同类项的定义知,与是同类项,与是同类项与5是同类项,合并后是故答案为 :,5,.【考
13、点】本题考查了同类项的定义及合并同类项的法则,是基础知识,需熟练掌握5、-2【解析】【分析】原式去括号合并后,根据结果与字母x无关,确定出a与b的值,代入原式计算即可求出值【详解】解:x2+ax-(bx2-x-3)=x2+ax-bx2+x+3=(1-b)x2+(a+1)x+3,且代数式的值与字母x无关,1-b=0,a+1=0,解得:a=-1,b=1,则a-b=-1-1=-2,故答案为:-2【考点】此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键三、解答题1、(1),;(2),;(3);(4)【解析】【分析】(1)根据规律找出系数和次数的规律即可;(2)根据(1)的规律即可求得第2
14、017个和第2018个单项式;(3)根据(1)的规律写出第n个单项式;(4)将代入求值即可【详解】(1)根据规律第5个单项式为,第6个单项式为故答案为:,(2)第2017个和第2018个单项式分别为,(3)系数的规律:第n个对应的系数是,指数的规律:第n个对应的指数是,第n个单项式是,(4)当a1时,a+2a2+3a3+4a4+99a99+100a100+101a101【考点】此题考查单项式的规律探索,分别找出单项式的系数和指数的规律是解决此类问题的关键2、 (1)见解析(2)(3)经过或秒后点A到点C的距离为3cm(4)的值不会随着t的变化而变化,【解析】【分析】(1)根据题意,在数轴上表示
15、点A、B、C的位置即可;(2)利用数轴上两点间的距离公式解题;(3)分两种情况讨论:点A在点C的左侧或点A在点C的右侧;(4)表示出BA、CB,再相减即可解题(1)解:由题意得:A点对应的数为,B点对应的数为1,点C对应的数为,点A,B,C在数轴上表示如图:(2)解:设原点为O,如图,故答案为:(3)解:当点A在点C的左侧时,设经过x秒后点A到点C的距离为3cm,由题意得:,解得:当点A在点C的右侧时,设经过x秒后点A到点C的距离为3cm,由题意得:,解得:综上,经过或秒后点A到点C的距离为3cm(4)解:的值不会随着t的变化而变化,由题意:,移动t秒后,的值不会随着t的变化而变化,【考点】本
16、题考查数轴、数轴上两点间的距离等知识,是重要考点,掌握相关知识是解题关键3、(1)1;(2)5【解析】【分析】(1)由非负数的性质可求得a、b的值,然后将a、b的值代入即可;(2)由非负数的性质可求得a、b的值,然后分别求得a、b的绝对值,最后带入计算即可【详解】解:(1),;(2),【考点】本题主要考查的是求代数式的值、求一个数绝对值、非负数的性质,几个非负数的和为0,这几数都为04、(1); (2);(3)【解析】【分析】(1)根据题意把A和B表示的代数式代入,然后合并同类项求解即可;(2)根据题意把A和B表示的代数式代入,然后合并同类项求解即可;(3)根据题意把A和B表示的代数式代入,然后表示出C即可;【详解】解:(1),=;(2),=;(3),将A和B代入,得:【考点】此题考查了代数式的表示和合并同类项,解题的关键是熟练掌握代数式的表示和合并同类项方法5、,-3【解析】【分析】先去括号,再合并同类项,最后代值即可【详解】解:原式=当,时原式=-3【考点】本题考查整式的化简求值,正确的计算能力是解决问题的关键