收藏 分享(赏)

2022-2023学年北师大版八年级数学上册第一章勾股定理专题测评试卷(含答案详解版).docx

上传人:a**** 文档编号:637544 上传时间:2025-12-12 格式:DOCX 页数:25 大小:1.18MB
下载 相关 举报
2022-2023学年北师大版八年级数学上册第一章勾股定理专题测评试卷(含答案详解版).docx_第1页
第1页 / 共25页
2022-2023学年北师大版八年级数学上册第一章勾股定理专题测评试卷(含答案详解版).docx_第2页
第2页 / 共25页
2022-2023学年北师大版八年级数学上册第一章勾股定理专题测评试卷(含答案详解版).docx_第3页
第3页 / 共25页
2022-2023学年北师大版八年级数学上册第一章勾股定理专题测评试卷(含答案详解版).docx_第4页
第4页 / 共25页
2022-2023学年北师大版八年级数学上册第一章勾股定理专题测评试卷(含答案详解版).docx_第5页
第5页 / 共25页
2022-2023学年北师大版八年级数学上册第一章勾股定理专题测评试卷(含答案详解版).docx_第6页
第6页 / 共25页
2022-2023学年北师大版八年级数学上册第一章勾股定理专题测评试卷(含答案详解版).docx_第7页
第7页 / 共25页
2022-2023学年北师大版八年级数学上册第一章勾股定理专题测评试卷(含答案详解版).docx_第8页
第8页 / 共25页
2022-2023学年北师大版八年级数学上册第一章勾股定理专题测评试卷(含答案详解版).docx_第9页
第9页 / 共25页
2022-2023学年北师大版八年级数学上册第一章勾股定理专题测评试卷(含答案详解版).docx_第10页
第10页 / 共25页
2022-2023学年北师大版八年级数学上册第一章勾股定理专题测评试卷(含答案详解版).docx_第11页
第11页 / 共25页
2022-2023学年北师大版八年级数学上册第一章勾股定理专题测评试卷(含答案详解版).docx_第12页
第12页 / 共25页
2022-2023学年北师大版八年级数学上册第一章勾股定理专题测评试卷(含答案详解版).docx_第13页
第13页 / 共25页
2022-2023学年北师大版八年级数学上册第一章勾股定理专题测评试卷(含答案详解版).docx_第14页
第14页 / 共25页
2022-2023学年北师大版八年级数学上册第一章勾股定理专题测评试卷(含答案详解版).docx_第15页
第15页 / 共25页
2022-2023学年北师大版八年级数学上册第一章勾股定理专题测评试卷(含答案详解版).docx_第16页
第16页 / 共25页
2022-2023学年北师大版八年级数学上册第一章勾股定理专题测评试卷(含答案详解版).docx_第17页
第17页 / 共25页
2022-2023学年北师大版八年级数学上册第一章勾股定理专题测评试卷(含答案详解版).docx_第18页
第18页 / 共25页
2022-2023学年北师大版八年级数学上册第一章勾股定理专题测评试卷(含答案详解版).docx_第19页
第19页 / 共25页
2022-2023学年北师大版八年级数学上册第一章勾股定理专题测评试卷(含答案详解版).docx_第20页
第20页 / 共25页
2022-2023学年北师大版八年级数学上册第一章勾股定理专题测评试卷(含答案详解版).docx_第21页
第21页 / 共25页
2022-2023学年北师大版八年级数学上册第一章勾股定理专题测评试卷(含答案详解版).docx_第22页
第22页 / 共25页
2022-2023学年北师大版八年级数学上册第一章勾股定理专题测评试卷(含答案详解版).docx_第23页
第23页 / 共25页
2022-2023学年北师大版八年级数学上册第一章勾股定理专题测评试卷(含答案详解版).docx_第24页
第24页 / 共25页
2022-2023学年北师大版八年级数学上册第一章勾股定理专题测评试卷(含答案详解版).docx_第25页
第25页 / 共25页
亲,该文档总共25页,全部预览完了,如果喜欢就下载吧!
资源描述

1、北师大版八年级数学上册第一章勾股定理专题测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在ABC中,A,B,C的对边分别记为a,b,c,下列结论中不正确的是()A如果a2=b2c2,那么ABC是直角三

2、角形且A=90B如果A:B:C=1:2:3,那么ABC是直角三角形C如果,那么ABC是直角三角形D如果,那么ABC是直角三角形2、以下列各组数的长为边作三角形,不能构成直角三角形的是()A3,4,5B4,5,6C6,8,10D9,12,153、有一个边长为1的正方形,以它的一条边为斜边,向外作一个直角三角形,再分别以直角三角形的两条直角边为边,向外各作一个正方形,称为第一次“生长”(如图1);再分别以这两个正方形的边为斜边,向外各自作一个直角三角形,然后分别以这两个直角三角形的直角边为边,向外各作一个正方形,称为第二次“生长”(如图2)如果继续“生长”下去,它将变得“枝繁叶茂”,请你算出“生长

3、”了2021次后形成的图形中所有的正方形的面积和是()A1B2020C2021D20224、如图,由6个相同小正方形组成的网格中,A,B,C均在格点上,则ABC 的度数为()A45B50C55D605、有一个面积为1的正方形,经过一次“生长”后,在他的左右肩上生出两个小正方形,其中,三个正方形围成的三角形是直角三角形,再经过一次“生长”后,变成了上图,如果继续“生长”下去,它将变得“枝繁叶茂”,请你算出“生长”了2020次后形成的图形中所有的正方形的面积和是()A1B2021C2020D20196、九章算术是我国古代数学名著,记载着这样一个问题:“今有池方一丈,葭生其中央,出水一尺引葭赴岸,适

4、与岸齐问水深、葭长各几何?”大意是:有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面水的深度与这根芦苇的长度分别是多少?设芦苇的长度为x尺,则可列方程为()Ax2+52(x+1)2Bx2+102(x+1)2Cx252(x1)2Dx2102(x1)27、在直角三角形中,若勾为3,股为4,则弦为()A5B6C7D88、在ABC中,AB=10,AC=2,BC边上的高AD=6,则另一边BC等于()A10B8C6或10D8或109、如图,在由边长为1的7个正六边形组成的网格中,点A,B在格点上若再选择一个格点C

5、,使ABC是直角三角形,且每个直角三角形边长均大于1,则符合条件的格点C的个数是()A2B4C5D610、在自习课上,小芳同学将一张长方形纸片ABCD按如图所示的方式折叠起来,她发现D、B两点均落在了对角线AC的中点O处,且四边形AECF是菱形若AB3cm,则阴影部分的面积为()A1cm2B2cm2Ccm2Dcm2第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在高2米,坡角为30的楼梯表面铺地毯,地毯的长至少需_米2、如图,台风过后,某希望小学的旗杆在离地某处断裂,且旗杆顶部落在离旗杆底部8m处,已知旗杆原长16m,你能求出旗杆在离底部_m位置断裂3、勘测队按实

6、际需要构建了平面直角坐标系,并标示了A,B,C三地的坐标,数据如图(单位:km)笔直铁路经过A,B两地(1)A,B间的距离为_km;(2)计划修一条从C到铁路AB的最短公路l,并在l上建一个维修站D,使D到A,C的距离相等,则C,D间的距离为_km4、如图,将一个长方形纸片沿折叠,使C点与A点重合,若,则线段的长是_5、九章算术中有“折竹抵地”问题:“今有竹高一丈,末折抵地,去根三尺,问折者高几何?”题意是:有一根竹子原来高1丈(1丈=10尺),中部有一处折断,竹梢触地面处离竹根3尺,试问折断处离地面多高?如图,设折断处距离地面x尺,根据题意,可列方程为_三、解答题(5小题,每小题10分,共计

7、50分)1、阅读理解:课堂上学习了勾股定理后,知道“勾三、股四、弦五”王老师给出一组数让学生观察:3,4,5;5,12,13;7,24,25;9,40,41;学生发现这些勾股数的勾都是奇数,且从3起就没有间断过,于是王老师提出以下问题让学生解决(1)请你根据上述的规律写出下一组勾股数:11,_,_;(2)若第一个数用字母(为奇数,且)表示,则后两个数用含的代数式分别怎么表示?聪明的小明发现每组第二个数有这样的规律:,于是他很快表示出了第二个数为,则用含的代数式表示第三个数为_(3)用所学知识说明(2)中用表示的三个数是勾股数2、如图,中,是边上一点,且,若求的长3、如图,把长方形纸片沿折叠,使

8、点落在边上的点处,点落在点处.(1)试说明;(2)设,试猜想,之间的关系,并说明理由.4、如图,已知和中,点C在线段BE上,连接DC交AE于点O(1)DC与BE有怎样的位置关系?证明你的结论;(2)若,求DE的长5、如图,在四边形中,于,(1)求证:;(2)若,求四边形的面积-参考答案-一、单选题1、A【解析】【分析】根据直角三角形的判定和勾股定理的逆定理解答即可【详解】解:A、如果a2=b2-c2,即b2=a2+c2,那么ABC是直角三角形且B=90,选项错误,符合题意;B、如果A:B:C=1:2:3,由A+B+C=180,可得A=90,那么ABC是直角三角形,选项正确,不符合题意;C、如果

9、a2:b2:c2=9:16:25,满足a2+b2=c2,那么ABC是直角三角形,选项正确,不符合题意;D、如果A-B=C,由A+B+C=180,可得A=90,那么ABC是直角三角形,选项正确,不符合题意;故选:A【考点】本题考查的是直角三角形的判定和勾股定理的逆定理的应用,如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形2、B【解析】【分析】先求出两小边的平方和,再求出最长边的平方,最后看看是否相等即可【详解】解:A、32+42=52,故是直角三角形,不符合题意;B、42+5262,故不是直角三角形,符合题意;C、62+82=102,故是直角三角形,不符合题意;D

10、、92+122=152,故是直角三角形,不符合题意;故选:B【考点】此题主要考查了勾股定理逆定理,关键是掌握如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形3、D【解析】【分析】根据题意可得每“生长”一次,面积和增加1,据此即可求得“生长”了2021次后形成的图形中所有的正方形的面积和【详解】解:如图,由题意得:SA=1,由勾股定理得:SBSC=1,则 “生长”了1次后形成的图形中所有的正方形的面积和为2,同理可得:“生长”了2次后形成的图形中所有的正方形面积和为3,“生长”了3次后形成的图形中所有正方形的面积和为4,“生长”了2021次后形成的图形中所有的正方形

11、的面积和是2022,故选:D【考点】本题考查了勾股数规律问题,找到规律是解题的关键4、A【解析】【分析】连接AC,利用勾股定理分别求出AB、AC、BC,根据勾股定理的逆定理得到ABC是等腰直角三角形,ACB=90,再根据三角形内角和定理得到答案【详解】连接AC,AC=BC,ABC是等腰直角三角形,ACB=90,ABC= (180-ACB)=45故选A【考点】本题考查了等腰三角形,勾股定理的逆定理,解决问题的关键是作辅助线构建三角形,熟练掌握等腰三角形的定义和性质,熟练运用勾股定理的逆定理判断直角三角形5、B【解析】【分析】根据勾股定理求出“生长”了1次后形成的图形中所有的正方形的面积和,结合图

12、形总结规律,根据规律解答即可【详解】解:由题意得,正方形A的面积为1,由勾股定理得,正方形B的面积+正方形C的面积=1,“生长”了1次后形成的图形中所有的正方形的面积和为2,同理可得,“生长”了2次后形成的图形中所有的正方形的面积和为3,“生长”了3次后形成的图形中所有的正方形的面积和为4,“生长”了2020次后形成的图形中所有的正方形的面积和为2021,故选:B【考点】本题考查了勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c26、C【解析】【分析】首先设芦苇长x尺,则水深为(x1)尺,根据勾股定理可得方程(x1)252x2【详解】解:设芦苇长x尺,由题意得

13、:(x1)252x2,即x252(x1)2故选:C【考点】此题主要考查了勾股定理的应用,解题的关键是读懂题意,从题中抽象出勾股定理这一数学模型7、A【解析】【分析】直接根据勾股定理求解即可【详解】解:在直角三角形中,勾为3,股为4,弦为,故选A【考点】本题考查了勾股定理,熟练掌握勾股定理是解题的关键8、C【解析】【详解】分两种情况:在图中,由勾股定理,得;BCBDCD8210.在图中,由勾股定理,得;BCBDCD826.故选C.9、D【解析】【分析】分三种情况讨论,当A=90,或B=90,或C=90时,分别画出符合条件的图形,即可解答【详解】解:分三种情况讨论,当A=90,或B=90,或C=9

14、0如图 符合条件的格点C的个数是6个故选:D【考点】本题考查正多边形和圆的性质、直角三角形的判定与性质、直径所对的圆周角是90等知识,是基础考点,掌握相关知识是解题关键10、D【解析】【分析】由菱形的性质得到FCOECO,进而证明ECOECBFCO30,2BECE,利用勾股定理得出BC,再解得菱形的面积为2 ,最后由阴影部分的面积 S菱形AECF解题【详解】解:四边形AECF是菱形,AB3,假设BEx,则AE3x,CE3x,四边形AECF是菱形,FCOECO,ECOECB,ECOECBFCO30,2BECE,CE2x,2x3x,解得:x1,CE2,利用勾股定理得出:BC2+BE2EC2,BC,

15、又AEABBE312,则菱形的面积是:AEBC2 阴影部分的面积 S菱形AECF cm2故选:D【考点】本题考查菱形的性质、勾股定理、含30直角三角形的性质等知识,是重要考点,掌握相关知识是解题关键二、填空题1、2+2【解析】【分析】地毯的竖直的线段加起来等于BC,水平的线段相加正好等于AC,即地毯的总长度至少为(AC+BC)【详解】在RtABC中,A=30,BC=2m,C=90,AB=2BC=4m,AC=m,AC+BC=2+2(m).故答案为2+2.【考点】本题主要考查勾股定理的应用,解此题的关键在于准确理解题中地毯的长度为水平与竖直的线段的和.2、6【解析】【分析】设,则,在中,利用勾股定

16、理列方程,即可求解【详解】解:如图,由题意知,设,则,在中,即,解得,因此旗杆在离底部6m位置断裂故答案为:6【考点】本题考查勾股定理的实际应用,读懂题意,根据勾股定理列出方程是解题的关键3、 20 13【解析】【分析】(1)由垂线段最短以及根据两点的纵坐标相同即可求出AB的长度;(2)根据A、B、C三点的坐标可求出CE与AE的长度,设CD=x,根据勾股定理即可求出x的值【详解】(1)由A、B两点的纵坐标相同可知:ABx轴,AB=12(8)=20;(2)过点C作lAB于点E,连接AC,作AC的垂直平分线交直线l于点D,由(1)可知:CE=1(17)=18,AE=12,设CD=x,AD=CD=x

17、,由勾股定理可知:x2=(18x)2+122,解得:x=13,CD=13故答案为(1)20;(2)13【考点】本题考查了勾股定理,解题的关键是根据A、B、C三点的坐标求出相关线段的长度,本题属于中等题型4、【解析】【分析】根据折叠的性质和勾股定理即可求得【详解】解:长方形纸片,根据折叠的性质可得,设,根据勾股定理,即,解得,故答案为:【考点】本题考查折叠与勾股定理能正确表示直角三角形的三边是解题关键5、【解析】【分析】根据勾股定理即可得出结论【详解】解:设未折断的竹干长为尺,根据题意可列方程为:故答案为:【考点】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决

18、实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图领会数形结合的思想的应用三、解答题1、 (1)60,61(2)(3)见解析【解析】【分析】(1)分析所给四组的勾股数:3、4、5;5、12、13;7、24、25;9、40、41;可得下一组一组勾股数:11,60,61;(2)根据所提供的例子发现股是勾的平方减去1的二分之一,弦是勾的平方加1的二分之一;(3)依据勾股定理的逆定理进行证明即可(1)解:3、4、5;5、12、13;7、24、25;9、40、41;,11,60,61;故答案为:60,61;(2)解:第一个数用字母a(a为奇数,且a3)表示,第二数为;则用含a的

19、代数式表示第三个数为;故答案为:;(3)解:,又a为奇数,且a3,由a,三个数组成的数是勾股数【考点】本题考查的是勾股数之间的关系,属规律型问题,根据题目中所给的勾股数及关系式进行猜想、证明即可2、AC2=CE2+AE2=102+24AC=26,265=5.2(s)答:它至少需要5.2s才能赶回巢中【考点】本题考查了勾股定理的应用关键是构造直角三角形,同时注意:时间=路程速度22【解析】【分析】过点作于点,则,结合可得出,进而可得出,在中,利用勾股定理可求出的长,即,结合可求出的长【详解】解:过点作于点,如图所示,在中,即,又,【考点】本题考查了勾股定理、等腰三角形的性质以及三角形内角和定理,

20、在中,利用勾股定理求出的长是解题的关键3、(1)证明见解析;(2),之间的关系是理由见解析【解析】【分析】(1)根据折叠的性质、平行的性质及等角对等边即可说明;(2)根据折叠的性质将AE、AB、BF都转化到直角三角形中,由勾股定理可得,之间的关系【详解】(1)由折叠的性质 ,得, 在长方形纸片中,(2),之间的关系是理由如下:由(1)知,由折叠的性质,得,在中,所以,所以【考点】本题主要考查了勾股定理,灵活利用折叠的性质进行线段间的转化是解题的关键4、(1),见解析;(2)【解析】【分析】(1)易证,再根据全等性质即可求得;(2)由BC和CE可得BE,再由全等的,再根据勾股定理即可求得;【详解

21、】(1)证明:在和中,(2),【考点】本题考查三角形全等和勾股定理,掌握三角形全等条件是解题的关键5、(1)详见解析;(2)S四边形ABCD=56【解析】【分析】(1)由等角的余角相等可得DAC=ABE,再根据题意可得RtBAERtADC,即可证;(2)根据勾股定理算出AC,由全等可得BE=AC,再算出ACD的面积和ABC的面积相加即可【详解】解:(1)BEAC,ABE+BAE=90,BAD=90,BAE+DAC=90,DAC=ABE,又AB=AD,BEA=ACD,RtBAERtADC(AAS),BE=AC(2)AB=AD=10,CD=6,ACD=90,RtBAERtADC,BE=AC=8,【考点】本题考查三角形全等的判定和性质,三角形面积,关键在于牢记基础知识并灵活使用

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 语文

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1