1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版数学八年级上册期中考试题 A卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、图中的小正方形边长都相等,若,则点Q可能是图中的()A点DB点CC点BD点
2、A2、长度分别为2,3,3,4的四根细木棒首尾相连,围成一个三角形(木棒允许连接,但不允许折断),得到的三角形的最长边长为()A4B5C6D73、已知三角形两边的长分别是3和7,则此三角形第三边的长可能是()A1B2C8D114、下列图形中,内角和等于360的是()A三角形B四边形C五边形D六边形5、如图,三角形纸片ABC,AB=AC,BAC=90,点E为AB中点,沿过点E的直线折叠,使点B与点A重合,折痕现交于点F,已知EF=,则BC的长是()AB3C3D3二、多选题(5小题,每小题4分,共计20分)1、关于多边形,下列说法中正确的是()A过七边形一个顶点可以作4条对角线B边数越多,多边形的
3、外角和越大C六边形的内角和等于720D多边形的内角中最多有3个锐角2、(多选)如图,在中,分别为边,上的点,平分,于点,为的中点,延长交于点,则下列判断中正确的结论有()A线段是的高B与面积相等CD3、下列命题中是假命题的有()A形状相同的两个三角形是全等形;B在两个三角形中,相等的角是对应角,相等的边是对应边; 线 封 密 内 号学级年名姓 线 封 密 外 C全等三角形对应边上的高、中线及对应角平分线分别相等D如果两个三角形都和第三个三角形不全等,那么这两个三角形也一定不全等;4、如图,为了估计池塘两岸,间的距离,在池塘的一侧选取点,测得米,米,那么,间的距离可能是()A5米B8.7米C27
4、米D18米5、(多选)如图,在RtABC中,BAC90,ACQBCQ,ADBC,AECE,AD与CQ交于点N,BE与CQ交于点M,下面说法正确的是()ASABESBCEBAQNANQCBAD2ACQDADBCABAC第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、如图,射线AB与射线CD平行,点F为射线AB上的一定点,连接CF,点P是射线CD上的一个动点(不包括端点C),将沿PF折叠,使点C落在点E处若,当点E到点A的距离最大时,_2、一个多边形的每一个外角都等于60,则这个多边形的内角和为_度3、如图,在ABC中,点D是AC的中点,分别以AB,BC为直角边向ABC外作
5、等腰直角三角形ABM和等腰直角三角形BCN,其中ABMNBC90,连接MN,已知MN4,则BD_4、如果三角形两条边分别为3和5,则周长L的取值范围是_5、如图,两根旗杆间相距20米,某人从点B沿BA走向点A,一段时间后他到达点M,此时他分别仰望旗杆的顶点C和D,两次视线的夹角为90,且CMDM已知旗杆BD的高为12米,该人的运动速度为2米/秒,则这个人运动到点M所用时间是_秒四、解答题(5小题,每小题8分,共计40分)1、如图,在ABC中,ABC、ACB的平分线交于点D,延长BD交AC于E,G、F分别在BD、BC上,连接DF、GF,其中A2BDF,GDDE(1)当A80时,求EDC的度数;
6、线 封 密 内 号学级年名姓 线 封 密 外 (2)求证:CFFGCE2、如图,是边长为1的等边三角形,点,分别在,上,且,求的周长3、如图,在ABC中,ACB90,用直尺和圆规在斜边AB上作一点P,使得点P到点B的距离与点P到边AC的距离相等(保留作图痕迹,不写作法)4、问题情景:如图1,在同一平面内,点和点分别位于一块直角三角板的两条直角边,上,点与点在直线的同侧,若点在内部,试问,与的大小是否满足某种确定的数量关系?(1)特殊探究:若,则_度,_度,_度;(2)类比探索:请猜想与的关系,并说明理由;(3)类比延伸:改变点的位置,使点在外,其它条件都不变,判断(2)中的结论是否仍然成立?若
7、成立,请说明理由;若不成立,请直接写出,与满足的数量关系式5、如图所示,在三角形ABC中,作的平分线与AC交于点E,求证:.-参考答案-一、单选题1、A【解析】【分析】根据全等三角形的判定即可解决问题【详解】解:观察图象可知MNPMFD故选:A【考点】本题考查全等三角形的判定,解题的关键是熟练掌握基本知识,属于中考常考题型 线 封 密 内 号学级年名姓 线 封 密 外 2、B【解析】【分析】利用三角形的三边关系列举出所围成三角形的不同情况,通过比较得到结论.【详解】长度分别为5、3、4,能构成三角形,且最长边为5;长度分别为2、6、4,不能构成三角形;长度分别为2、7、3,不能构成三角形;长度
8、分别为6、3、3,不能构成三角形;综上所述,得到三角形的最长边长为5故选:B.【考点】此题考查构成三角形的条件,三角形的三边关系,解题中运用不同情形进行讨论的方法,注意避免遗漏构成的情况.3、C【解析】【分析】根据三角形两边之和大于第三边,两边之差小于第三边可确定出第三边的范围,据此根据选项即可判断【详解】解:设第三边长为x,则有7-3x7+3,即4x10,观察只有C选项符合,故选C【考点】本题考查了三角形三边的关系,熟练掌握三角形三边之间的关系是解题的关键4、B【解析】【分析】根据多边形内角和公式,列式算出它是几边形【详解】解:由多边形内角和公式,解得故选:B【考点】本题考查多边形内角和公式
9、,解题的关键是掌握多边形内角和公式5、B【解析】【分析】折叠的性质主要有:1.重叠部分全等;2.折痕是对称轴,对称点的连线被对称轴垂直平分. 由折叠的性质可知,所以可求出AFB=90,再直角三角形的性质可知,所以,的长可求,再利用勾股定理即可求出BC的长【详解】解: 线 封 密 内 号学级年名姓 线 封 密 外 ABAC,,故选B.【考点】本题考查了折叠的性质、等腰直角三角形的判断和性质以及勾股定理的运用,求出AFB=90是解题的关键二、多选题1、ACD【解析】【分析】根据多边形的内角和、外角和,多边形的内角线,即可解答【详解】解:A、过七边形一个顶点可以作4条对角线,选项正确,符合题意;B、
10、多边形的外角和是固定不变的,选项错误,不符合题意;C、六边形的内角和等于720,选项正确,符合题意;D、多边形的内角中最多有3个锐角,选项正确,符合题意;故选:ACD【考点】本题考查了多边形,解决本题的关键是熟记多边形的有关性质2、BCD【解析】【分析】根据三角形的高线、中线的性质及全等三角形与三角形内角和定理依次进行判断即可得出结果【详解】解:CEAD,ACE的高是AF,不是AD,选项A不符合题意;G为AD中点,BG是ABD的中线,ABG与BDG面积相等,选项B符合题意;AD平分BAC,CEAD,EAF=CAF,AFE=AFC=90,在AFE与AFC中, 线 封 密 内 号学级年名姓 线 封
11、 密 外 AFEAFC,AE=AC,AEC=ACE,AB-AE=BE,AB-AC=BE,选项D符合题意;AEC=CBE+BCE,ACE=CBE+BCE,CAD+ACE=90,CAD+CBE+BCE=90,选项C符合题意,故选:BCD【考点】题目主要考查全等三角形的判定和性质,三角形内角和定理及三角形的基本性质,熟练掌握全等三角形与三角形的基本性质是解题关键3、ABD【解析】【分析】利用全等形的定义、对应角及对应边的定义,全等三角形的性质分别判断后即可确定正确的选项【详解】解:A、形状相同的两个三角形不一定是全等形,原命题是假命题,符合题意;B、在两个全等三角形中,相等的角是对应角,相等的边是对
12、应边,原命题是假命题,符合题意;C、全等三角形对应边上的高、中线及对应角平分线分别相等,正确;原命题是真命题;D、如果两个三角形都和第三个三角形不全等,那么这两个三角形也可能全等,原命题是假命题,符合题意故选:ABD【考点】本题考查了命题与定理:判断一件事情的语句,叫做命题许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果那么”形式有些命题的正确性是用推理证实的,这样的真命题叫做定理4、ABD【解析】【分析】连接AB,根据三角形的三边关系定理得出不等式,即可得出选项【详解】解:连接AB,PA=15米,PB=11米,由三角形三边关系定理得:15
13、11AB15+11,4AB26,那么,间的距离可能是5米、8.7米、18米;故选:ABD【考点】本题考查了三角形的三边关系定理,能根据三角形的三边关系定理得出不等式是解此题的关键5、ABCD 线 封 密 内 号学级年名姓 线 封 密 外 【解析】【分析】根据三角形中位线的概念利用等底同高三角形面积相等判断;结合三角形外角的性质和同角的余角相等判断;根据同角的余角相等和角平分线的定义判断;利用三角形的面积公式判断【详解】解:AECE,ABE与BCE等底同高,SABESBCE,故A正确;在RtABC中,BAC90,ADBC,ABC+ACB=90,BAD+ABC=90,ABC=DAC,BAD=ACD
14、,AQN=ABC+BCQ,ANQ=DAC+ACQ,ACQBCQ,AQNANQ,故B正确;BADACD=2ACQ,故C正确;,故D正确,故选:ABCD【考点】此题考查了三角形中线的性质,角平分线的定义,同角的余角相等等知识,题目难度不大,理解相关的概念正确推理论证是解题的关键三、填空题1、#59度【解析】【分析】利用三角形三边关系可知:当E落在AB上时,AE距离最大,利用且,得到,再根据折叠性质可知:,利用补角可知,进一步可求出【详解】解:利用两边之和大于第三边可知:当E落在AB上时,AE距离最大,如图:且,折叠得到,故答案为:【考点】本题考查三角形的三边关系,平行线的性质,折叠的性质,补角,角
15、平分线,解题的关键是找出:当E落在AB上时,AE距离最大,再解答即可2、720 线 封 密 内 号学级年名姓 线 封 密 外 【解析】【分析】先根据外角和与外角的度数求出多边形的边数,再根据多边形内角和公式计算即可【详解】多边形的每一个外角都为60,它的边数:,它的内角和:,故答案为:720【考点】此题考查了多边形内角和与外角和,关键是正确计算多边形的边数3、2【解析】【分析】延长BD到E,使DE=BD,连接AE,证明ADECDB(SAS),可得AE=CB,EAD=BCD,再根据ABM和BCN是等腰直角三角形,证明MBNBAE,可得MN=BE,进而可得BD与MN的数量关系即可求解【详解】解:如
16、图,延长BD到E,使DE=BD,连接AE,点D是AC的中点,AD=CD,在ADE和CDB中,ADECDB(SAS),AE=CB,EAD=BCD,ABM和BCN是等腰直角三角形,AB=BM,CB=NB,ABM=CBN=90,BN=AE,又MBN+ABC=360-90-90=180,BCA+BAC+ABC=180,MBN=BCA+BAC=EAD+BAC=BAE,在MBN和BAE中,MBNBAE(SAS),MN=BE,BE=2BD,MN=2BD又MN=4,BD=2,故答案为:2【考点】 线 封 密 内 号学级年名姓 线 封 密 外 本题考查了全等三角形的判定与性质、等腰直角三角形,解决本题的关键是掌
17、握全等三角形的判定与性质4、10L16【解析】【分析】根据三角形的三边关系确定第三边的取值范围,再根据不等式的性质求出答案【详解】设第三边长为x,有两条边分别为3和5,5-3x5+3,解得2x8,2+3+5x+3+58+3+5,周长L=x+3+5,10L16,故答案为: 10L16【考点】此题考查三角形三边关系,不等式的性质,熟记三角形的三边关系确定出第三条边长是解题的关键5、故答案为584【解析】【分析】根据角的等量代换求出,便可证出,利用全等的性质得到,从而求出的长,再通过时间=路程速度列式计算即可【详解】解:根据题意可得:,又在和中时间=故答案为4【考点】本题主要考查了全等三角形的判定与
18、性质,利用角的等量代换找出三角形全等的条件是解题的关键四、解答题1、 (1)(2)证明见解析【解析】【分析】 线 封 密 内 号学级年名姓 线 封 密 外 (1)根据三角形内角和与角平分线定义可得,再根据外角性质即可求出;(2)在线段上取一点,使,连接,证明,得到,利用全等三角形的性质与外角性质得出,证明,从而得到,即可证明结论(1)解:在ABC中,A80,ABC、ACB的平分线交于点D,EDC=DBC+DCB;(2)解:在线段上取一点,使,连接,如图所示:平分,在和中,为的一个外角,为的一个外角,平分,A2BDF,在和中, 线 封 密 内 号学级年名姓 线 封 密 外 ,【考点】本题考查三角
19、形综合,涉及到三角形内角和定理的运用、角平分线定义、外角性质求角度、三角形全等的判定与性质等知识点,正确的做辅助线是解决问题的关键2、2【解析】【分析】延长至点,使,连接,证明推出,进而得到,从而证明,推出EF=CP,由此求出的周长=AB+AC得到答案.【详解】解:如图,延长至点,使,连接是等边三角形,在和中,在和中,的周长.【考点】此题考查全等三角形的判定及性质,等边三角形的性质,等腰三角形等边对等角的性质,题中辅助线的引出是解题的关键.3、详见解析【解析】 线 封 密 内 号学级年名姓 线 封 密 外 【分析】先作ABC的角平分线BD,再过点D作AC的垂线交AB于P,则利用PDBC得到PD
20、BCBD,于是可证明PDBCBD,所以PBPD【详解】解:如图,点P为所作【考点】此题主要考查尺规作图,解题的关键是熟知角平分线的作法与平行线的性质.4、(1)125,90,35;(2)ABP+ACP=90-A,证明见解析;(3)结论不成立ABP-ACP=90-A,ABP+ACP=A-90或ACP - ABP =90-A【解析】【分析】(1)根据三角形内角和即可得出ABC+ACB,PBC+PCB,然后即可得出ABP+ACP;(2)根据三角形内角和定理进行等量转换,即可得出ABP+ACP=90-A;(3)按照(2)中同样的方法进行等量转换,求解即可判定.【详解】(1)ABC+ACB=180-A=
21、180-55=125度,PBC+PCB=180-P=180-90=90度,ABP+ACP=ABC+ACB -(PBC+PCB)=125-90=35度;(2)猜想:ABP+ACP=90-A;证明:在ABC中,ABC+ACB180-A,ABC=ABP+PBC,ACB=ACP+PCB,(ABP+PBC)+(ACP+PCB)=180-A,(ABP+ACP)+(PBC+PCB)=180-A,又在RtPBC中,P=90,PBC+PCB=90,(ABP+ACP)+90=180-A,ABP+ACP=90-A(3)判断:(2)中的结论不成立证明:在ABC中,ABC+ACB180-A,ABC=PBC-ABP,AC
22、B=PCB-ACP,(PBC+PCB)-(ABP+ACP)=180-A,又在RtPBC中,P=90,PBC+PCB=90, 线 封 密 内 号学级年名姓 线 封 密 外 ABP-ACP=90-A,ABP+ACP=A-90或ACP - ABP =90-A【考点】此题主要考查利用三角形内角和定理进行等角转换,熟练掌握,即可解题.5、见解析【解析】【分析】由于BC,AE和BE没在一条线上,不能进行比较;故在BC上截取AE和BE,然后根据等腰三角形、角平分线的知识即可发现全等三角形,证明边的相等关系,最后运用线段的和差关系,即可完成证明.【详解】证明:如图在上截取,连结.在上截取,连结.,平分,又,【考点】本题考查了等腰三角形的性质,在进行线段比较的题目中,可以采用截取法,让它们位于一条直线上,以方便比较.