1、人教版八年级数学上册第十五章分式综合测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若a+b=5,则代数式(a)()的值为()A5B5CD2、如果关于x的分式方程的解为整数,且关于y的不等式组有解,则
2、符合条件的所有整数a的和为()A1B0C1D43、若分式的值为零,则的值为()A-3B-1C3D4、分式方程的解是()A0B2C0或2D无解5、若代数式有意义,则实数的取值范围是()ABCD6、计算的结果是()ABC1D7、化简的结果是()ABCD8、当时,下列分式没有意义的是()ABCD9、已知关于x的分式方程=1的解是负数,则m的取值范围是()Am3Bm3且m2Cm3Dm3且m210、已知x3是分式方程的解,那么实数k的值为()A1B0C1D2第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、甲、乙两人在社区进行核酸采样,甲每小时比乙每小时多采样10人,甲采样160人
3、所用时间与乙采样140人所用时间相等,甲、乙两人每小时分别采样多少人?设甲每小时采样x人,则可列分式方程为_2、已知=+,则实数A=_3、若关于的分式方程有增根,则的值为_.4、计算:=_5、计算:_三、解答题(5小题,每小题10分,共计50分)1、先化简,再求值:,其中2、(1)先化简,再求值:,其中(2)先化简,再求值:,其中3、计算:(1)(2)4、计算:华华的计算过程如下:解:原式请问华华的计算结果正确吗?如果不正确,请说明理由5、计算(1)(2)-参考答案-一、单选题1、B【解析】【分析】原式括号中两项通分并利用同分母分式的减法法则计算,约分得到最简结果,把已知等式代入计算即可求出值
4、【详解】a+b=5,原式 故选:B【考点】考查分式的化简求值,掌握减法法则以及除法法师是解题的关键,注意整体代入法在解题中的应用2、A【解析】【分析】先解分式方程,根据分式方程有整数解求解的值,再根据一元一次不等式组有解,求解的取值范围,从而可得答案.【详解】解: 关于x的分式方程的解为整数, 则 或 解得:或或或 又 则 即 所以或或由得: 由得: 关于y的不等式组有解, 综上:或 符合条件的所有整数a的和为 故选A【考点】本题考查的是分式方程的整数解,根据一元一次不等式组有解求解参数的取值范围,掌握“解分式方程及分式方程的整数解的含义,一元一次不等式组有解的含义”是解本题的关键.3、A【解
5、析】【分析】根据分式的值为零的条件即可求出答案【详解】解:由题意可知:解得:x=-3,故选:A【考点】本题考查分式的值,解题的关键是熟练运用分式的值为零的条件4、D【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解【详解】去分母得,解得,经检验是增根,则分式方程无解故选:D【考点】本题考查了解分式方程,利用了转化的思想,解分式方程注意要检验5、D【解析】【分析】分式有意义的条件是分母不为【详解】代数式有意义,故选D【考点】本题运用了分式有意义的条件知识点,关键要知道分母不为是分式有意义的条件6、C【解析】【分析】根据同分母分式的加法法则,即可求
6、解【详解】解:原式=,故选C【考点】本题主要考查同分母分式的加法法则,掌握”同分母分式相加,分母不变,分子相加“是解题的关键7、A【解析】【分析】原式第一项约分后,利用同分母分式的减法法则计算,即可得到结果【详解】解:原式=- =-=故选:A【考点】本题考查分式的加减法,熟练掌握运算法则是解题关键8、B【解析】【分析】由分式有意义的条件分母不能为零判断即可.【详解】,当x=1时,分母为零,分式无意义.故选B.【考点】本题考查分式有意义的条件,关键在于牢记有意义条件.9、D【解析】【分析】解方程得到方程的解,再根据解为负数得到关于m的不等式结合分式的分母不为零,即可求得m的取值范围.【详解】=1
7、,解得:x=m3,关于x的分式方程=1的解是负数,m30,解得:m3,当x=m3=1时,方程无解,则m2,故m的取值范围是:m3且m2,故选D【考点】本题考查了分式方程的解,熟练掌握分式方程的解法以及分式方程的分母不为零是解题关键10、D【解析】【详解】解:将x=3代入,得:,解得:k=2,故选D二、填空题1、【解析】【分析】先表示乙每小时采样(x-10)人,进而得出甲采样160人和乙采样140人所用的时间,再根据时间相等列出方程即可【详解】根据题意可知乙每小时采样(x-10)人,根据题意,得故答案为:【考点】本题主要考查了列分式方程,确定等量关系是列方程的关键2、1【解析】【详解】【分析】先
8、计算出,再根据已知等式得出A、B的方程组,解之可得【详解】,=+,解得:,故答案为1【考点】本题考查了分式的加减法运算,熟练掌握分式加减运算的法则、得出关于A、B的方程组是解本题的关键.3、3【解析】【分析】把分式方程化为整式方程,进而把可能的增根代入,可得m的值【详解】去分母得3x-(x-2)=m+3,当增根为x=2时,6=m+3 m=3故答案为3【考点】考查分式方程的增根问题;增根问题可按如下步骤进行:让最简公分母为0确定增根;化分式方程为整式方程;把增根代入整式方程即可求得相关字母的值4、3【解析】【分析】先计算负整数指数幂和算术平方根,再计算加减即可求解【详解】原式523,故答案为:3
9、【考点】此题考查了实数的运算,负整数指数幂,熟练掌握运算法则是解本题的关键5、【解析】【分析】先分别化简负整数指数幂和绝对值,然后再计算【详解】,故填:【考点】本题考查负整数指数幂及实数的混合运算,掌握运算法则准确计算是解题关键三、解答题1、,-10【解析】【分析】根据分式的减法运算以及乘除运算进行化简,然后将x的值代入原式即可求出答案【详解】解:.当x5时,原式-10.【考点】本题考查分式的化简求值,解题的关键是熟练运用分式的加减运算以及乘除运算法则,本题属于基础题型2、(1),;(2),【解析】【分析】(1)先将括号内的分母因式分解,通分,然后结合除以一个分式等于乘以这个分式的倒数化简,最
10、后代入计算解题;(2)先去括号,再合并同类项,最后代入计算解题【详解】(1)当时,原式;(2)当时,原式【考点】本题考查分式的化简求值、整式的化简求值,涉及完全平方公式等知识,是重要考点,难度较易,掌握相关知识是解题关键3、(1)27;(2)【解析】【分析】(1)首先计算乘方、除法和负指数幂,然后进行加减计算即可;(2)按照幂的运算法则计算,再合并同类项【详解】解:(1)=27;(2)=【考点】本题主要考查了有理数的混合运算,整式的混合运算,熟练掌握实数以内的各种运算法则,是解题的关键4、不正确,理由见解析【解析】【分析】按照同分母的减法法则计算即可【详解】华华的计算结果不正确,理由:减式的分子是一个多项式,没有注意分数线的括号作用;正确的运算是:原式【考点】本题考查了分式的加减,掌握运算法则是解本题的关键注意: 减式的分子是一个多项式,运算时要注意分数线的括号作用,防止出现的错误5、(1)7;(2)【解析】【分析】(1)先分别计算乘方、绝对值、负整数指数幂、零指数幂,再计算乘法,最后计算加减;(2)先将分子、分母因式分解,再计算乘法,最后计算减法即可求解【详解】(1)原式846184217;(2)原式【考点】本题主要考查实数和分式的混合运算,解题的关键是掌握绝对值的性质、负整数指数幂、零指数幂及分式的混合运算顺序和运算法则