1、人教版八年级数学上册第十五章分式定向测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知m2n2nm2,则的值是()A1B0C1D2、若关于的分式方程有增根,则的值为()A2B3C4D53、的结果是(
2、)ABCD14、若4,则x的值是()A4BCD45、关于x的方程2+有增根,则k的值为()A3B3C3D26、化简得()ABCD7、化简的结果是()ABCD8、计算的结果是()ABC1D9、对于任意的实数,总有意义的分式是()ABCD10、化简的结果是()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、计算:(1)_;(2)_2、若关于x的分式方程有正整数解,则整数m为 _3、分式与的最简公分母是_4、关于x的分式方程无解,则m的值为_5、计算:_三、解答题(5小题,每小题10分,共计50分)1、计算(1)(2)2、先化简,再求值:,其中满足3、先化简,再求值:
3、,其中x2,y2.4、化简,并求值其中a与2、3构成的三边,且a为整数5、计算:-参考答案-一、单选题1、C【解析】【详解】分析:首先进行移项,然后转化为两个完全平方式,根据非负数的性质求出m和n的值,然后代入所求的代数式得出答案详解:,解得:m=2,n=2,故选C点睛:本题主要考查的是非负数的性质以及代数式的求值,属于中等难度的题型将代数式转化为两个完全平方式是解决这个问题的关键2、D【解析】【分析】根据分式方程有增根可求出,方程去分母后将代入求解即可.【详解】解:分式方程有增根,去分母,得,将代入,得,解得故选:D【考点】本题考查了分式方程的无解问题,掌握分式方程中增根的定义及增根产生的原
4、因是解题的关键3、B【解析】【分析】先计算分式的乘方,再把除法转换为乘法,约分后即可得解【详解】解:故选:B【考点】此题主要考查了分式的混合运算,熟练掌握运算法则是解答此题的关键4、C【解析】【分析】去分母,再系数化1,即可求得.【详解】解:4,故选:C【考点】本题考查分式方程的解法,比较基础.5、D【解析】【分析】根据增根的定义可求出x的值,把方程去分母后,再把求得的x的值代入计算即可.【详解】解:原方程有增根,最简公分母x30,解得x3,方程两边都乘(x3),得:x12(x3)+k,当x3时,k2,符合题意,故选D【考点】本题考查的是分式方程的增根,在分式方程变形的过程中,产生的不适合原方
5、程的根叫做分式方程的增根.增根使最简公分母等于0,不适合原分式方程,但是适合去分母后的整式方程6、A【解析】【分析】异分母分式加减法法则:把分母不相同的几个分式化成分母相同的分式,叫做通分,经过通分,异分母分式的加减就转化为同分母分式的加减【详解】解:-x+1=-(x-1)=-=故选:A【考点】本题考查了分式的加减运算,熟练通分是解题的关键7、A【解析】【分析】原式第一项约分后,利用同分母分式的减法法则计算,即可得到结果【详解】解:原式=- =-=故选:A【考点】本题考查分式的加减法,熟练掌握运算法则是解题关键8、C【解析】【分析】根据同分母分式的加法法则,即可求解【详解】解:原式=,故选C【
6、考点】本题主要考查同分母分式的加法法则,掌握”同分母分式相加,分母不变,分子相加“是解题的关键9、B【解析】【分析】根据分式有意义的条件进行判断即可【详解】A项当x=1时,分母为0,分式无意义;B项分母x2+1恒大于0,故分式总有意义;C项当x=0时,分母为0,分式无意义;D项当x=1时,分母为0,分式无意义;故选:B【考点】本题考查了分式有意义的条件,掌握知识点是解题关键10、D【解析】【分析】最简公分母为,通分后求和即可【详解】解:的最简公分母为,通分得故选D【考点】本题考查了分式加法运算解题的关键与难点是找出通分时分式的最简公分母二、填空题1、 #0.5 【解析】【分析】(1)由负整数指
7、数幂的运算法则计算即可(2)由零指数幂的运算法则计算即可【详解】(1)(2)故答案为:,【考点】本题考查了负整数指数幂以及零指数幂的运算法则,即任何不等于0的数的0次幂都等于1;是由在,时转化而来的,也就是说当同底数幂相除时,若被除式的指数小于除式的指数,则转化成负指数幂的形式2、0【解析】【分析】先解分式方程,再根据有正整数解及分母不为0进行求解即可【详解】方程两边同乘,得解得分式方程有正整数解即即故答案为:0【考点】本题考查解分式方程及分式方程正整数根的情况,注意分母不等于0是解题的关键3、m(m+3)(m3)【解析】【分析】先把两分式化成最简形式得;,然后确定最简公分母即可【详解】解:化
8、简两分式得:,最简公分母是m(m+3)(m3)【考点】本题主要考查了最简公分母,公分母是能使几个分式同时去掉分母的式子,几个含分母的式子系数取其最小公倍数,字母取其最高次数即得公分母4、1或6或【解析】【分析】方程两边都乘以,把方程化为整式方程,再分两种情况讨论即可得到结论【详解】解:, , ,当时,显然方程无解,又原方程的增根为:,当时,当时,综上当或或时,原方程无解故答案为:1或6或【考点】本题考查的是分式方程无解的知识,掌握分式方程无解时的分类讨论是解题的关键5、【解析】【分析】先分别化简负整数指数幂和绝对值,然后再计算【详解】,故填:【考点】本题考查负整数指数幂及实数的混合运算,掌握运
9、算法则准确计算是解题关键三、解答题1、(1)7;(2)【解析】【分析】(1)先分别计算乘方、绝对值、负整数指数幂、零指数幂,再计算乘法,最后计算加减;(2)先将分子、分母因式分解,再计算乘法,最后计算减法即可求解【详解】(1)原式846184217;(2)原式【考点】本题主要考查实数和分式的混合运算,解题的关键是掌握绝对值的性质、负整数指数幂、零指数幂及分式的混合运算顺序和运算法则2、2a2+4a,6【解析】【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,再代值计算即可求出值【详解】解:原式=2a(a+2)=2a2+4a.,a2+2a=3.原式
10、=2(a2+2a)=6.【考点】此题主要考查了分式的化简求值,正确化简分式是解题关键3、 ,【解析】【分析】先根据分式的混合运算顺序和法则化简原式,再将x、y的值代入求解可得【详解】解:原式=,=,=,当,时,原式=,=,=【考点】本题主要考查分式的化简求值,熟练掌握分式的混合运算顺序和法则是解题的关键4、,原式【解析】【分析】根据分式的运算性质进行花间,再根据三角西三边关系和分式有意义的条件求解即可;【详解】原式,a与2、3构成的三边,且a为整数,即,当或时,原式没有意义,取,原式【考点】本题主要考查了分式的化简和分式有意义的条件和三角形三边关系,准确分析计算是解题的关键5、x=-,得4y=8,y=2所以原方程组的解为;(2),去分母,得6=3(1+x),去括号,得6=3+3x,移项合并,得3x=3,系数化为1,得x=1经检验,x=1是原方程的增根所以原方程无解【考点】本题考查了解二元一次方程组和解分式方程,能把二元一次方程组转化成一元一次方程是解二元一次方程组的关键,能把分式方程转化成整式方程是解分式方程的关键3.【解析】【分析】最简公分母为(ab)(ab),所以通分得,然后对分子运算,得,最后约分.【详解】【考点】在进行分式的加减运算时,在通分前如果分子分母有相同的项,要注意先把相同项约掉,且一定要保持最终的结果是最简分式.