1、八年级数学上册第十二章全等三角形专题测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图:,则此题可利用下列哪种方法来判定()AASABAASCHLD缺少条件,不可判定2、 “经过已知角一边上的一点作
2、“个角等于已知角”的尺规作图过程如下:已知:如图(1),AOB和OA上一点C求作:一个角等于AOB,使它的顶点为C,一边为CA作法:如图(2),(1)在0A上取一点D(ODOC),以点O为圆心,OD长为半径画弧,交OB于点E;(2)以点C为圆心,OD长为半径画弧,交CA于点F,以点F为圆心,DE长为半径画弧,两弧交于点C;(3)作射线CC所以CCA就是所求作的角此作图的依据中不含有()A三边分别相等的两个三角形全等B全等三角形的对应角相等C两直线平行同位角相等D两点确定一条直线3、如图,若,则下列结论中不一定成立的是()ABCD4、图中的小正方形边长都相等,若,则点Q可能是图中的()A点DB点
3、CC点BD点A5、下列说法正确的是()A形状相同的两个三角形全等B面积相等的两个三角形全等C完全重合的两个三角形全等D所有的等边三角形全等6、下列命题的逆命题一定成立的是()对顶角相等;同位角相等,两直线平行;全等三角形的周长相等;能够完全重合的两个三角形全等ABCD7、如图,在中,的平分线交于点D,DE/AB,交于点E,于点F,则下列结论错误的是()ABCD8、如图,ABC的三边AB,BC,CA长分别是20,30,40,其三条角平分线将ABC分为三个三角形,则SABO:SBCO:SCAO等于()A1:1:1B1:2:3C2:3:4D3:4:59、如图,在中,D是上一点,于点E,连接,若,则等
4、于()ABCD10、已知锐角,如图,(1)在射线上取点,分别以点为圆心,长为半径作弧,交射线于点,;(2)连接,交于点根据以上作图过程及所作图形,下列结论错误的是()ABC若,则D点在的平分线上第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,图中由实线围成的图形与是全等形的有_(填番号)2、如图,中,D为延长线上一点,且,与的延长线交于点P,若,则_3、如图,四边形ABCD,连接BD,ABAD,CEBD,ABCE,BDCD若AD5,CD7,则BE_4、如图,ADBC,连接AC,过点D作于E,过点B作于F(1)若,则ADE为_(2)写出线段BF、EF、DE三者间的数
5、量关系_5、如图所示,点在一块直角三角板上(其中),于点,于点,若,则_度三、解答题(5小题,每小题10分,共计50分)1、方格纸上有2个图形,你能沿着格线把每一个图形都分成完全相同的两个部分吗?请画出分割线2、如图,在中,ABAC,D是BA延长线上一点,E是AC的中点,连接DE并延长,交BC于点M,DAC的平分线交DM于点F求证:AFCM3、在中,点D是直线BC上一点(点D不与点B,C重合),以AD为一边在AD的右侧作,使,连接CE(1)如图(1),若点D在线段BC上,和之间有怎样的数量关系?(不必说明理由)(2)若,当点D在射线BC上移动时,如图(2),和之间有怎样的数量关系?说明理由4、
6、如图,在中,(1)如图所示,直线过点,于点,于点,且求证:(2)如图所示,直线过点,交于点,交于点,且,则是否成立?请说明理由5、如图,沿AC方向开山修路,为了加快施工进度,要在山的另一边同时施工,工人师傅在AC上取一点B,在小山外取一点D,连接BD,并延长使DFBD,过F点作AB的平行线段MF,连接MD,并延长,在其延长线上取一点E,使DEDM,在E点开工就能使A、C、E成一条直线,请说明其中的道理; -参考答案-一、单选题1、C【解析】【分析】根据全等三角形的判定定理直接求解【详解】解:在RtABC和RtDCB中, (HL),故选C【考点】本题考查了全等三角形的判定定理,牢记全等三角形的判
7、定定理是解题的关键2、C【解析】【分析】根据题意知,作图依据有全等三角形的判定定理SSS,全等三角形的性质和两点确定一条直线,直接判断即可【详解】解:由题意可得:由全等三角形的判定定理SSS可以推知EODGCF,故A正确;结合该全等三角形的性质对应角相等,故B正确;作射线CG,利用两点确定一条直线,故D正确;故选:C【考点】本题考查作一个角等于已知角和三角形全等的判定与性质,解题关键是明确作图原理,准确进行判断3、A【解析】【分析】根据翻三角形全等的性质一一判断即可【详解】解:ABCADE,AD=AB,AE=AC,BC=DE,ABC=ADE,BAD=CAE,AD=AB,ABD=ADB,BAD=
8、180-ABD-ADB,CDE=180-ADB-ADE,ABD=ADE,BAD=CDE故B、C、D选项不符合题意,故选:A【考点】本题考了三角形全等的性质,解题的关键是三角形全等的性质4、A【解析】【分析】根据全等三角形的判定即可解决问题【详解】解:观察图象可知MNPMFD故选:A【考点】本题考查全等三角形的判定,解题的关键是熟练掌握基本知识,属于中考常考题型5、C【解析】【分析】根据全等形的概念:能够完全重合的两个图形叫做全等形,以及全等三角形的判定定理可得答案【详解】解:A、形状相同的两个三角形全等,说法错误,应该是形状相同且大小也相同的两个三角形全等;B、面积相等的两个三角形全等,说法错
9、误;C、完全重合的两个三角形全等,说法正确;D、所有的等边三角形全等,说法错误;故选:C【考点】此题主要考查了全等图形,关键是掌握全等形的概念6、C【解析】【分析】求出各命题的逆命题,然后判断真假即可【详解】解:对顶角相等,逆命题为:相等的角为对顶角,是假命题不符合题意;同位角相等,两直线平行,逆命题为:两直线平行,同位角相等,是真命题,符合题意;全等三角形的周长相等. 逆命题为:周长相等的两个三角形全等,是假命题,不符合题意;能够完全重合的两个三角形全等. 逆命题为:两个全等三角形能够完全重合,是真命题,符合题意;故逆命题成立的是,故选C【考点】本题主要考查命题与定理,熟悉掌握逆命题的求法是
10、解本题的关键7、A【解析】【分析】根据角平分线的性质得到CD=DF=3,故B正确;根据平行线的性质及角平分线得到AE=DE=5,故C正确;由此判断D正确;再证明BDFDEC,求出BF=CD=3,故A错误【详解】解:在中,的平分线交于点D,CD=DF=3,故B正确;DE=5,CE=4,DE/AB,ADE=DAF,CAD=BAD,CAD=ADE,AE=DE=5,故C正确;AC=AE+CE=9,故D正确;B=CDE,BFD=C=90,CD=DF,BDFDEC,BF=CD=3,故A错误;故选:A【考点】此题考查了角平分线的性质定理,平行线的性质,等边对等角证明角相等,全等三角形的判定及性质,熟记各知识
11、点并综合应用是解题的关键8、C【解析】【分析】过点作于点,作于点,作于点,先根据角平分线的性质可得,再根据三角形的面积公式即可得【详解】解:如图,过点作于点,作于点,作于点,是的三条角平分线,故选:C【考点】本题考查了角平分线的性质,熟练掌握角平分线的性质是解题关键9、C【解析】【分析】证明RtBCDRtBED(HL),由全等三角形的性质得出CD=DE,则可得出答案【详解】解:,在和中,cm,cm故选:C【考点】本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定方法是解题的关键10、C【解析】【分析】根据题意可知,即可推断结论A;先证明,再证明即可证明结论B;连接OP,可证明可证明结论
12、D;由此可知答案【详解】解:由题意可知,故选项A正确,不符合题意;在和中,在和中,故选项B正确,不符合题意;连接OP,在和中,点在的平分线上,故选项D正确,不符合题意;若,则,而根据题意不能证明,故不能证明,故选项C错误,符合题意;故选:C【考点】本题考查角平分线的判定,全等三角形的判定与性质,明确以某一半径画弧时,准确找到相等的线段是解题的关键二、填空题1、【解析】【分析】根据全等图形的定义,两个图形必须能够完全重合才行【详解】观察图形,发现图形可以和图形完全重合故答案为:【考点】本题考查全等的概念,任何一组图形,要想全等,则这组图形必须能够完全重合2、【解析】【分析】作于,根据全等三角形性
13、质得出CP=PM,DC=AM,设PC=PM=x,AC=BC=3x,AM=DC=5x,求出BD=2x,即可求出答案【详解】解:作于,在和中,在和中,设,故答案为:【考点】本题考查了三角形内角和定理,全等三角形的性质和判定的应用,主要考查学生的推理能力3、2【解析】【分析】根据HL证明,可得,根据即可求解【详解】解: ABAD,CEBD,在与中, AD5,CD7,BD=CD7,故答案为:2【考点】本题考查了全等三角形的性质与判定,掌握HL证明三角形全等是解题的关键4、 30 【解析】【分析】(1)根据直角三角形两锐角互余进行倒角即可求解;(2)根据ASA证明,即可求解【详解】解:(1),且ADBC
14、,;故答案为:30;(2)在和中,故答案为:【考点】本题考查直角三角形两锐角互余、全等三角形的判定与性质等内容,根据已知条件进行倒角是解题的关键5、15【解析】【分析】根据,判断OB是的角平分线,即可求解【详解】解:由题意,即点O到BC、AB的距离相等, OB是的角平分线, ,故答案为:15【考点】本题考查角平分线的定义及判定,熟练掌握“到一个角的两边距离相等的点在这个角的平分线上”是解题的关键三、解答题1、见解析【解析】【分析】观察第一个图,图中共有20个小方格,要分成完全相同两部分,则每个有10个小格,则可按如图所示,沿ABCD分割;第二个图同理沿EFGHPQ分割即可【详解】解:如图所示,
15、第一个图,图中共有20个小方格,要分成完全相同两部分,则每个有10个小格,则可按如图所示,沿ABCD分割;第二个图同理沿EFGHPQ分割即可将分割出的两个图形,逆时针旋转90度,再通过平移,两部分能够完全重合,所以分割出的两部分完全相同【考点】本题考查图形全等,掌握全等图形的定义是解题的关键2、证明见解析【解析】【分析】先根据等腰三角形的性质可得,再根据三角形的外角性质可得,然后根据角平分线的定义得,最后根据三角形全等的判定定理与性质即可得证【详解】,AF是的平分线,E是AC的中点,在和中,【考点】本题考查了等腰三角形的性质、角平分线的定义、三角形全等的判定定理与性质等知识点,熟练掌握三角形全
16、等的判定方法是解题关键3、(1);(2),理由见解析【解析】【分析】(1)根据题意证明,根据三角形的内角和即可求解;(2)设AD与CE交于F点,根据题意证明,根据平角的性质即可求解【详解】(1)理由如下:,=;(2)理由如下:设AD与CE交于F点,【考点】此题主要考查全等三角形的判定与性质,解题的关键是熟知全等三角形的判定定理4、(1)见解析;(2)仍然成立,理由见解析【解析】【分析】(1)首先根据同角的余角相等得到,然后证明,然后根据全等三角形对应边相等得到,然后通过线段之间的转化即可证明;(2)首先根据三角形内角和定理得到,然后证明,根据全等三角形对应边相等得到,最后通过线段之间的转化即可证明【详解】证明:(1),在和中,;(2)仍然成立,理由如下:,在和中,【考点】此题考查了全等三角形的性质和判定,同角的与相等,三角形内角和定理等知识,解题的关键是根据同角的余角相等或三角形内角和定理得到5、详见解析.【解析】【详解】试题分析:首先根据题意得出BDE和FDM全等,从而得出BEMDMF,即BEMF,最后根据过直线外一点有且只有一条直线与已知直线平行得出答案试题解析:BDDF,DEDM,BDEFDM, BDEFDM,BEMDMF, BEMF,ABMF,根据过直线外一点有且只有一条直线与已知直线平行,A、C、E在一条直线上