1、人教版八年级数学上册第十三章轴对称定向测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若点和点关于轴对称,则点在()A第一象限B第二象限C第三象限D第四象限2、如图,等边的顶点,规定把等边“先沿轴翻折
2、,再向左平移1个单位”为一次变换,这样连续经过2021次变换后,顶点C的坐标为()ABCD3、如图,在中,则的长为()ABCD4、如图,在平面直角坐标系中,ABC位于第二象限,点B的坐标是(5,2),先把ABC向右平移4个单位长度得到A1B1C1,再作与A1B1C1关于于x轴对称的A2B2C2,则点B的对应点B2的坐标是()A(3,2)B(2,3)C(1,2)D(1,2)5、如图,在的正方形网格中有两个格点A、B,连接,在网格中再找一个格点C,使得是等腰直角三角形,满足条件的格点C的个数是()A2B3C4D56、一条船从海岛A出发,以15海里/时的速度向正北航行,2小时后到达海岛B处灯塔C在海
3、岛在海岛A的北偏西42方向上,在海岛B的北偏西84方向上则海岛B到灯塔C的距离是()A15海里B20海里C30海里D60海里7、如图,ABC是边长为4的等边三角形,点P在AB上,过点P作PEAC,垂足为E,延长BC至点Q,使CQPA,连接PQ交AC于点D,则DE的长为()A1B1.8C2D2.58、已知的周长是,则下列直线一定为的对称轴的是A的边的中垂线B的平分线所在的直线C的边上的中线所在的直线D的边上的高所在的直线9、等腰三角形两边长为3,6,则第三边的长是()A3B6CD3或610、若等腰三角形的一个外角度数为100,则该等腰三角形顶角的度数为()A80B100C20或100D20或80
4、第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在等边三角形ABC中,点D是边BC的中点,则BAD=_2、如图,在ABC中,AB=AC,外角ACD=110,则A=_3、如图,中,D,E分别是AC,AB上的点,BD与CE交于点O.给出下列三个条件:EBODCO;BEOCDO;BECD.上述三个条件中,哪两个条件可判定是等腰三角形(用序号写出一种情形):_ 4、如图,ABC中,AB=AC,D、E分别在CA、BA的延长线上,连接BD、CE,且D+E=180,若BD=6,则CE的长为_5、如图,在ABC中,ABAC10,BC12,ADBC于点D,点E、F分别是线段AB、A
5、D上的动点,且BEAF,则BF+CE的最小值为 _三、解答题(5小题,每小题10分,共计50分)1、如图 AB=AC,CDAB于D,BEAC于E,BE与CD相交于点O(1)求证AD=AE;(2)连接OA,BC,试判断直线OA,BC的关系并说明理由2、等腰三角形一腰上的中线把该三角形的周长分为13.5 cm和11.5 cm两部分,求这个等腰三角形各边的长莉莉的解答过程如下:设在中,BD是中线中线将三角形的周长分为13.5cm和11.5 cm,如图所示,解得,三角形三边的长为9cm,9cm,7cm请问莉莉的解法正确吗?如果不正确,请给出理由3、如图,已知ABC中,AB=AC,A=108,BD平分A
6、BC求证:BC=AB+CD 4、如图所示,在三角形ABC中,作的平分线与AC交于点E,求证:.5、如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,ABC的顶点均在格点上,点C的坐标为(4,1)(1)画出ABC的各点纵坐标不变,横坐标乘1后得到的;(2)画出的各点横坐标不变,纵坐标乘1后得到的;(3)点的坐标是;点的坐标是-参考答案-一、单选题1、D【解析】【分析】根据关于x轴对称的点的横坐标相等,纵坐标互为相反数,可得答案【详解】点A(a2,3)和点B(1,b5)关于x轴对称,得a2-1,b5-3解得a1,b8则点C(a,b)在第四象限,故选:D【考点】本题考查了
7、关于y轴对称的点的坐标,利用关于y轴对称的点的横坐标互为相反数,纵坐标相等得出a2-1,b5-3是解题关键2、D【解析】【分析】先求出点C坐标,第一次变换,根据轴对称判断出点C变换后在x轴下方然后求出点C纵坐标,再根据平移的距离求出点C变换后的横坐标,最后写出第一次变换后点C坐标,同理可以求出第二次变换后点C坐标,以此类推可求出第n次变化后点C坐标【详解】ABC是等边三角形AB=3-1=2点C到x轴的距离为1+,横坐标为2C(2,)由题意可得:第1次变换后点C的坐标变为(2-1,),即(1,),第2次变换后点C的坐标变为(2-2,),即(0,)第3次变换后点C的坐标变为(2-3,),即(-1,
8、)第n次变换后点C的坐标变为(2-n,)(n为奇数)或(2-n,)(n为偶数),连续经过2021次变换后,等边的顶点的坐标为(-2019,),故选:D【考点】本题考查了利用轴对称变换(即翻折)和平移的特点求解点的坐标,在求解过程中找到规律是关键3、B【解析】【分析】根据等腰三角形性质求出B,求出BAC,求出DAC=C,求出AD=DC=4cm,根据含30度角的直角三角形性质求出BD,即可求出答案【详解】AB=AC,C=30,B=30,ABAD,AD=4cm,BD=8cm,ADB=60C=30,DAC=C=30,CD=AD=4cm,BC=BD+CD=8+4=12cm故选B.【考点】本题考查了等腰三
9、角形的性质,含30度角的直角三角形性质,三角形的内角和定理的应用,解此题的关键是求出BD和DC的长4、D【解析】【分析】首先利用平移的性质得到A1B1C1中点B的对应点B1坐标,进而利用关于x轴对称点的性质得到A2B2C2中B2的坐标,即可得出答案【详解】解:把ABC向右平移4个单位长度得到A1B1C1,此时点B(-5,2)的对应点B1坐标为(-1,2),则与A1B1C1关于于x轴对称的A2B2C2中B2的坐标为(-1,-2),故选D【考点】此题主要考查了平移变换以及轴对称变换,正确掌握变换规律是解题关键5、B【解析】【分析】根据题意,结合图形,分两种情况讨论:AB为等腰直角ABC底边;AB为
10、等腰直角ABC其中的一条腰【详解】解:如图:分情况讨论:AB为等腰直角ABC底边时,符合条件的C点有0个;AB为等腰直角ABC其中的一条腰时,符合条件的C点有3个故共有3个点,故选:B【考点】本题考查了等腰三角形的判定;解答本题关键是根据题意,画出符合实际条件的图形,数形结合的思想是数学解题中很重要的解题思想6、C【解析】【分析】根据题意画出图形,根据三角形外角性质求出C=CAB=42,根据等角对等边得出BC=AB,求出AB即可【详解】解:根据题意得:CBD=84,CAB=42,C=CBD-CAB=42=CAB,BC=AB,AB=15海里/时2时=30海里,BC=30海里,即海岛B到灯塔C的距
11、离是30海里故选C.【考点】本题考查了等腰三角形的性质和判定和三角形的外角性质,关键是求出C=CAB,题目比较典型,难度不大7、C【解析】【分析】过作的平行线交于,通过证明,得,再由是等边三角形,即可得出【详解】解:过作的平行线交于,是等边三角形,是等边三角形,CQPA,在中和中,于,是等边三角形,故选:C【考点】本题主要考查了等边三角形的判定与性质,全等三角形的判定与性质,作辅助线构造全等三角形是解题的关键8、C【解析】【分析】首先判断出是等腰三角形,AB是底边,然后根据等腰三角形的性质和对称轴的定义判断即可【详解】解:,是等腰三角形,AB是底边,一定为的对称轴的是的边上的中线所在的直线,故
12、选:C【考点】本题考查了等腰三角形的判定和性质以及对称轴的定义,判断出是等腰三角形,AB是底边是解题的关键9、B【解析】【分析】题目给出等腰三角形有两条边长为3和6,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形【详解】由等腰三角形的概念,得第三边的长可能为3或6,当第三边是3时,而3+3=6,所以应舍去;则第三边长为6故选B【考点】此题考查等腰三角形的性质和三角形的三边关系解题关键在于已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答10、D【解析】【分析】根据等腰三角形两底角相等,三角形内角和定理,分
13、两种情况进行讨论,当顶角的外角等于100,当底角的外角等于100,即可求得答案【详解】若顶角的外角等于100,那么顶角等于80,两个底角都等于50;若底角的外角等于100,那么底角等于80,顶角等于20故选:D【考点】本题主要考查了外角的定义、等腰三角形的性质以及三角形内角和的相关知识,注意分类讨论是解题的关键二、填空题1、30【解析】【分析】根据等腰三角形的三线合一的性质和等边三角形三个内角相等的性质填空【详解】ABC是等边三角形, 又点D是边BC的中点, 故答案是:30【考点】考查了等边三角形的性质:等边三角形的三个内角都相等,且都等于60等边三角形是轴对称图形,它有三条对称轴;它的任意一
14、角的平分线都垂直平分对边,三边的垂直平分线是对称轴2、40【解析】【分析】由ACD=110,可知ACB=70;由AB=AC,可知B=ACB=70;利用三角形外角的性质可求出A.【详解】解:ACD=110,ACB=180-110=70;AB=AC,B=ACB=70;A=ACD-B=110-70=40.故答案为40.【考点】本题考查了等边对等角和三角形外角的性质.3、或【解析】【分析】已知条件,先证BEOCDO,再证明ABCACB最后得到ABC是等腰三角形;已知条件可证明BEOCDO,再证明ABC是等腰三角形.【详解】解:或.由证明ABC是等腰三角形.在BEO和CDO中,EBODCO,EOBDOC
15、,BECD.BEOCDO(AAS),BOCO,OBCOCB,EBOOBCDCOOCB,即ABCACB,ABAC. 因此ABC是等腰三角形.由证明ABC是等腰三角形.在BEO和CDO中,EOBDOC,BEOCDO,BECD,BEOCDO(AAS),BOCO,OBCOCB,EBOOBCDCOOCB,即ABCACB,ABAC.ABC是等腰三角形.故答案为:或.【考点】本题考查了全等三角形的判定与性质、等腰三角形的判定;其中掌握用“AAS”判定两个三角形全等和用“等角对等边”判定三角形为等腰三角形是解决本题的关键4、6【解析】【分析】在AD上截取AF=AE,连接BF,易得ABFACE,根据全等三角形的
16、性质可得BFA=E,CE=BF,则有D=DFB,然后根据等腰三角形的性质可求解【详解】解:在AD上截取AF=AE,连接BF,如图所示:AB=AC,FAB=EAC,BF=EC,BFA=E,D+E=180,BFA+DFB=180,DFB=D,BF=BD, BD=6,5、【解析】【分析】过点作,使,连接,可证明,则当、三点共线时,的值最小,最小值为,求出即可求解【详解】解:过点作,使,连接,当、三点共线时,的值最小,在中,故答案为:【考点】本题考查轴对称求最短距离,熟练掌握轴对称求最短距离的方法,通过构造三角形全等,将所求的问题转化为将军饮马求最短距离是解题的关键三、解答题1、(1)证明见解析;(2
17、)互相垂直,证明见解析【解析】【分析】(1)根据AAS推出ACDABE,根据全等三角形的性质得出即可;(2)证RtADORtAEO,推出DAO=EAO,根据等腰三角形的性质推出即可【详解】(1)证明:CDAB,BEAC,ADC=AEB=90,ACD和ABE中,ACDABE(AAS),AD=AE(2)猜想:OABC证明:连接OA、BC,CDAB,BEAC,ADC=AEB=90在RtADO和RtAEO中,RtADORtAEO(HL)DAO=EAO,又AB=AC,OABC2、不正确,见解析【解析】【分析】根据AB和BC的大小关系分类讨论,然后根据三角形的周长差即可分别求出对应的AB和BC,从而得出结
18、论【详解】解:莉莉的解法不正确,理由如下:假设在中,BD是中线当时,解得,当时,解得综上,这个三角形三边的长分别为9 cm,9 cm,7 cm或【考点】这道题是用文字叙述的形式给出的,没有图形,也没有字母,因此,可以先根据文字叙述画出图形,标注字母,利用图形减小题目难度,由于腰和底边不相等造成一腰上的中线把三角形的周长分成两个不相等的部分,解题关键是既要考虑到腰比底边长,又要考虑到底边比腰长3、证明见解析【解析】【分析】在BC上截取点E,并使得BE=BA,连接DE,证明ABDEBD,得到DEB=BAD=108,进一步计算出DEC=CDE=72得到CD=CE即可证明【详解】证明:在线段BC上截取
19、BE=BA,连接DE,如下图所示:BD平分ABC,ABD=EBD, 在ABD和EBD中: ,ABDEBD(SAS),DEB=BAD=108,DEC=180-108=72,又AB=AC,C=ABC=(180-108)2=36,CDE=180-C-DEC=180-36-72=72,DEC=CDE,CD=CE,BC=BE+CE=AB+CD【考点】本题考查了角平分线的定义,三角形内角和定理,全等三角形的判定与性质,等腰三角形性质等,本题的关键是能在BC上截取BE,并使得BE=BA,这是角平分线辅助线和全等三角形的应用的一种常见作法4、见解析【解析】【分析】由于BC,AE和BE没在一条线上,不能进行比较
20、;故在BC上截取AE和BE,然后根据等腰三角形、角平分线的知识即可发现全等三角形,证明边的相等关系,最后运用线段的和差关系,即可完成证明.【详解】证明:如图在上截取,连结.在上截取,连结.,平分,又,【考点】本题考查了等腰三角形的性质,在进行线段比较的题目中,可以采用截取法,让它们位于一条直线上,以方便比较.5、(1)见解析(2)见解析(3)(4,1);(4,1)【解析】【分析】(1)ABC的各点纵坐标不变,横坐标乘-1后的坐标首先写出,然后在数轴上表示出来,顺次连接;(2)A1B1C1的各点横坐标不变,纵坐标乘-1后的坐标首先写出,然后在数轴上表示出来,顺次连接;(3)根据(1)(2)即可直接写出【详解】(1)A1的坐标是(-1,-4),B1的坐标是(-5,-4),C1的坐标是(-4,-1),如图,A1B1C1为所作;(2)A2的坐标是(-1,4),B2的坐标是(-5,4),C2的坐标是(-4,1),如图,A2B2C2为所作;(3)C1的坐标是(4,1),C2的坐标是(4,1)故答案是:(4,1),(4,1)【考点】本题考查了坐标与图形的变化轴对称变换,根据题目的叙述求得A1B1C1和A2B2C2的坐标是解题的关键