收藏 分享(赏)

2022-2023学年人教版九年级数学上册第二十二章二次函数单元测试练习题(含答案详解).docx

上传人:a**** 文档编号:635524 上传时间:2025-12-12 格式:DOCX 页数:27 大小:491.84KB
下载 相关 举报
2022-2023学年人教版九年级数学上册第二十二章二次函数单元测试练习题(含答案详解).docx_第1页
第1页 / 共27页
2022-2023学年人教版九年级数学上册第二十二章二次函数单元测试练习题(含答案详解).docx_第2页
第2页 / 共27页
2022-2023学年人教版九年级数学上册第二十二章二次函数单元测试练习题(含答案详解).docx_第3页
第3页 / 共27页
2022-2023学年人教版九年级数学上册第二十二章二次函数单元测试练习题(含答案详解).docx_第4页
第4页 / 共27页
2022-2023学年人教版九年级数学上册第二十二章二次函数单元测试练习题(含答案详解).docx_第5页
第5页 / 共27页
2022-2023学年人教版九年级数学上册第二十二章二次函数单元测试练习题(含答案详解).docx_第6页
第6页 / 共27页
2022-2023学年人教版九年级数学上册第二十二章二次函数单元测试练习题(含答案详解).docx_第7页
第7页 / 共27页
2022-2023学年人教版九年级数学上册第二十二章二次函数单元测试练习题(含答案详解).docx_第8页
第8页 / 共27页
2022-2023学年人教版九年级数学上册第二十二章二次函数单元测试练习题(含答案详解).docx_第9页
第9页 / 共27页
2022-2023学年人教版九年级数学上册第二十二章二次函数单元测试练习题(含答案详解).docx_第10页
第10页 / 共27页
2022-2023学年人教版九年级数学上册第二十二章二次函数单元测试练习题(含答案详解).docx_第11页
第11页 / 共27页
2022-2023学年人教版九年级数学上册第二十二章二次函数单元测试练习题(含答案详解).docx_第12页
第12页 / 共27页
2022-2023学年人教版九年级数学上册第二十二章二次函数单元测试练习题(含答案详解).docx_第13页
第13页 / 共27页
2022-2023学年人教版九年级数学上册第二十二章二次函数单元测试练习题(含答案详解).docx_第14页
第14页 / 共27页
2022-2023学年人教版九年级数学上册第二十二章二次函数单元测试练习题(含答案详解).docx_第15页
第15页 / 共27页
2022-2023学年人教版九年级数学上册第二十二章二次函数单元测试练习题(含答案详解).docx_第16页
第16页 / 共27页
2022-2023学年人教版九年级数学上册第二十二章二次函数单元测试练习题(含答案详解).docx_第17页
第17页 / 共27页
2022-2023学年人教版九年级数学上册第二十二章二次函数单元测试练习题(含答案详解).docx_第18页
第18页 / 共27页
2022-2023学年人教版九年级数学上册第二十二章二次函数单元测试练习题(含答案详解).docx_第19页
第19页 / 共27页
2022-2023学年人教版九年级数学上册第二十二章二次函数单元测试练习题(含答案详解).docx_第20页
第20页 / 共27页
2022-2023学年人教版九年级数学上册第二十二章二次函数单元测试练习题(含答案详解).docx_第21页
第21页 / 共27页
2022-2023学年人教版九年级数学上册第二十二章二次函数单元测试练习题(含答案详解).docx_第22页
第22页 / 共27页
2022-2023学年人教版九年级数学上册第二十二章二次函数单元测试练习题(含答案详解).docx_第23页
第23页 / 共27页
2022-2023学年人教版九年级数学上册第二十二章二次函数单元测试练习题(含答案详解).docx_第24页
第24页 / 共27页
2022-2023学年人教版九年级数学上册第二十二章二次函数单元测试练习题(含答案详解).docx_第25页
第25页 / 共27页
2022-2023学年人教版九年级数学上册第二十二章二次函数单元测试练习题(含答案详解).docx_第26页
第26页 / 共27页
2022-2023学年人教版九年级数学上册第二十二章二次函数单元测试练习题(含答案详解).docx_第27页
第27页 / 共27页
亲,该文档总共27页,全部预览完了,如果喜欢就下载吧!
资源描述

1、人教版九年级数学上册第二十二章二次函数单元测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、将抛物线C1:y(x3)22向左平移3个单位长度,得到抛物线C2,抛物线C2与抛物线C3关于x轴对称,则抛物线

2、C3的解析式为()Ayx22Byx22Cyx22Dyx222、如图,已知点M为二次函数图象的顶点,直线分别交x轴,y轴于点A,B点M在内,若点,都在二次函数图象上,则,的大小关系是()ABCD3、二次函数的图象的对称轴是()ABCD4、抛物线y=(x2)21可以由抛物线y=x2平移而得到,下列平移正确的是()A先向左平移2个单位长度,然后向上平移1个单位长度B先向左平移2个单位长度,然后向下平移1个单位长度C先向右平移2个单位长度,然后向上平移1个单位长度D先向右平移2个单位长度,然后向下平移1个单位长度5、已知二次函数y = ax2 + bx + c(a0)的图象如图所示,则下列结论:4a

3、+ 2b + c 0;y随x的增大而增大;方程ax2 + bx + c = 0两根之和小于零;一次函数y = ax + bc的图象一定不过第二象限,其中正确的个数是()A4个B3个C2个D1个6、由二次函数,可知()A其图象的开口向下B其图象的对称轴为直线x=-3C其最小值为1D当x0,顶点坐标为(4,6),函数有最小值为6故选:D【考点】本题主要考查了二次函数的最值问题,关键是根据二次函数的解析式确定a的符号和根据顶点坐标求出最值9、A【解析】【分析】求出原抛物线的顶点坐标,再根据向左平移横坐标减,向上平移纵坐标加求出平移后的抛物线的顶点坐标,然后利用顶点式解析式写出即可【详解】解:抛物线的

4、顶点坐标为(2,1),向左平移1个单位,再向上平移2个单位后的顶点坐标是(1,3)所得抛物线解析式是故选:A【考点】本题考查了二次函数图象的平移,利用顶点的变化确定抛物线解析式的变化更简便10、B【解析】【分析】根据函数图象与x轴的两个交点均在负半轴,可得抛物线的对称轴与x轴负半轴相交,可以判断a,b,c的符号,进而可得结论【详解】解:因为函数图象与x轴的两个交点均在负半轴,所以抛物线的对称轴与x轴负半轴相交,所以0,c0,因为a0,所以b0,因为c0,所以abc0,bc0,故选:B【考点】本题考查了二次函数图象与系数的关系,解决本题的关键是掌握二次函数图象与系数的关系二、填空题1、【解析】【

5、分析】由于抛物线y=2x2-1的对称轴是y轴,所以当x0时,y随x的增大而增大【详解】解:抛物线y=2x2-1中a=20,二次函数图象开口向上,且对称轴是y轴,当x0时,y随x的增大而增大故答案为:【考点】本题考查了抛物线y=ax2+b的性质:图象是一条抛物线;开口方向与a有关;对称轴是y轴;顶点(0,b)2、 2 【解析】【分析】(1)根据顶点式将代入解析式即可求得最大值;(2)根据顶点式求得最大值,根据顶点的位置以及自变量的取值范围,分情况讨论求得最值,进而求得的范围【详解】(1)当m1时,二次函数y(x1)2121,则顶点为则函数有最大值,故答案为:(2)二次函数y(xm)2m21,且对

6、称轴为,顶点坐标为当时,时,函数取得最大值即解得,不符合题意,舍去当,时,函数取得最大值解得 当时,时,函数取得最大值解得综上所述,【考点】本题考查了二次函数的性质,掌握的性质是解题的关键3、 (1,-2) 【解析】【分析】(1)将二次函数解析式化为顶点式求解;(2)抛物线的对称轴为直线x=1,得到当点M,N关于抛物线的对称轴对称时,x1+x2=2,结合x2-x1=2,可得x1=0,x2 =2,得到当2x23时,y1y2,再将x=2、x=3代入函数关系式进行求解即可 【详解】(1),抛物线顶点坐标为(1,-2),故答案为 (1,-2)(2)抛物线的对称轴为直线x=1,当点M,N关于抛物线的对称

7、轴对称时,x1+x2=2,结合x2-x1=2,可得x1=0,x2 =2,当2x23时,y1y2,对于y=m(x-1)2-2,当x =2时,y=m-2;当x=3时,y=4m-2,【考点】本题考查二次函数图象上的点的特征,解题关键是掌握二次函数与方程及不等式的关系4、【解析】【分析】根据题意和题目中的函数解析式,可以得到顶点的纵坐标小于0,然后代入数据计算即可【详解】解:抛物线图象与轴无交点,该抛物线开口向下,且,即: ,解之得:,故答案为:【考点】本题考查二次函数的性质、二次函数图象上点的坐标特征,明确题意,利用二次函数的性质解答是解答本题的关键5、【解析】【分析】先由题意得到,再设设,由勾股定

8、理得到,解得x的值,最后将点C、G、A坐标代入二次函数表达式,即可得到答案.【详解】解:点,反比例函数经过点B,则点,则,设,则,由勾股定理得:,解得:,故点,将点C、G、A坐标代入二次函数表达式得:,解得:,故答案为【考点】本题考查求二次函数解析式,解题的关键是熟练掌握待定系数法.三、解答题1、(1);(2)【解析】【分析】(1)利用的解析式求解的坐标,把,代入,利用待定系数法列方程组,解方程组可得答案;(2)联立两个函数解析式,求解的坐标,线段的长度, 如图,要使的周长最小,则最小,设二次函数与轴的另一交点为,抛物线的对称轴为: 点,连接 交对称轴于 ,此时,最小,再利用勾股定理求解,从而

9、可得答案【详解】.解:(1)抛物线与直线交于轴上一点,令 则 点把,代入得:,解得:,抛物线的解析式是;(2)将直线与二次函数联立得方程组: 解得:或, ,如图,要使的周长最小,则最小,设二次函数与轴的另一交点为, 抛物线的对称轴为: 点,连接 交对称轴于 ,此时,最小,此时:,的周长最小值为【考点】本题考查的是利用待定系数法求解二次函数的解析式,二次函数的性质,利用轴对称的性质求解三角形的周长的最小值,掌握以上知识是解题的关键2、(1)OC=;(2)y=x,抛物线解析式为y=x2x+2;(3)点P存在,坐标为(,)【解析】【分析】(1)令y=0,求出x的值,确定出A与B坐标,根据已知相似三角

10、形得比例,求出OC的长即可;(2)根据C为BM的中点,利用直角三角形斜边上的中线等于斜边的一半得到OC=BC,确定出C的坐标,利用待定系数法确定出直线BC解析式,把C坐标代入抛物线求出a的值,确定出二次函数解析式即可;(3)过P作x轴的垂线,交BM于点Q,设出P与Q的横坐标为x,分别代入抛物线与直线解析式,表示出坐标轴,相减表示出PQ,四边形ACPB面积最大即为三角形BCP面积最大,三角形BCP面积等于PQ与B和C横坐标之差乘积的一半,构造为二次函数,利用二次函数性质求出此时P的坐标即可【详解】解:(1)由题可知当y=0时,a(x1)(x3)=0,解得:x1=1,x2=3,即A(1,0),B(

11、3,0),OA=1,OB=3OCAOBC,OC:OB=OA:OC,OC2=OAOB=3,则OC=;(2)C是BM的中点,即OC为斜边BM的中线,OC=BC,点C的横坐标为,又OC=,点C在x轴下方,C(,),设直线BM的解析式为y=kx+b,把点B(3,0),C(,)代入得: ,解得:b=,k=,y=x,又点C(,)在抛物线上,代入抛物线解析式,解得:a=,抛物线解析式为y=x2x+2;(3)点P存在,设点P坐标为(x,x2x+2),过点P作PQx轴交直线BM于点Q,则Q(x,x),PQ=x(x2x+2)=x2+3x3,当BCP面积最大时,四边形ABPC的面积最大,SBCP=PQ(3x)+PQ

12、(x)=PQ=x2+x,当x=时,SBCP有最大值,四边形ABPC的面积最大,此时点P的坐标为(,)【考点】此题属于二次函数综合题,涉及的知识有:二次函数图象与性质,待定系数法确定函数解析式,相似三角形的判定与性质,以及坐标与图形性质,熟练掌握各自的性质是解本题的关键3、(1);(2)【解析】【分析】(1)根据一次函数的定义即可解决问题;(2)根据二次函数的定义即可解决问题;【详解】解:(1)由题意得,解得;(2)由题意得,解得且【考点】本题考查一次函数的定义、二次函数的定义,解题的关键是熟练掌握基本概念,(1)根据二次项的系数等于零,一次项的系数不等于零;(2)根据二次项的系数不等于零,可得

13、方程,根据解方程,可得答案4、(1); (2)第6天时,该企业利润最大,为12800元.(3)7天【解析】【分析】(1)根据题意确定一次函数的解析式,实际问题中x的取值范围要使实际问题有意义;(2)求出当天利润与天数的函数解析式,确定其最大值即可;(3)根据(2)中的函数解析式列出不等式方程即可解答【详解】(1)根据题意,得y与x的解析式为:()(2)设当天的当天的销售利润为w元,则根据题意,得当1x6时,w=(1200-800)(2x+20)=800x+8000,8000,w随x的增大而增大,当x=6时,w最大值=8006+8000=12800当6x12时,易得m与x的关系式:m=50x+5

14、00w=1200-(50x+500)(2x+20)=-100x2+400x+14000=-100(x-2)2+14400此时图象开口向下,在对称轴右侧,w随x的增大而减小,天数x为整数,当x=7时,w有最大值,为11900元,1280011900,当x=6时,w最大,且w最大值=12800元,答:该厂第6天获得的利润最大,最大利润是12800元(3)由(2)可得,1x6时, 解得:x3.5则第1-3天当天利润低于10800元,当6x12时,解得x-4(舍去)或x8则第9-12天当天利润低于10800元,故当天销售利润低于10800元的天数有7天【考点】本题主要考查一次函数和二次函数的应用,解题

15、关键在于理解题意,利用待定系数法确定函数的解析式,并分类讨论5、(1)y=2x28x+6;(2)点E(2,2)或(3,4);(3)存在,当点P坐标为(5,16)或(1,16)或(3,0)时,使A、D、P、Q为顶点的四边形为平行四边形【解析】【分析】(1)设抛物线解析式为:ya(x1)(x3),把点C坐标代入解析式,可求解;(2)先求出点M,点N坐标,利用待定系数法可求AD解析式,联立方程组可求点D坐标,可求SABD266,设点E(m,2m2),分两种情况讨论,利用三角形面积公式可求解;(3)分两种情况讨论,利用平行四边形的性质可求解【详解】解:(1)抛物线yax2+bx+c(a0)的图象经过A

16、(1,0),B(3,0),设抛物线解析式为:ya(x1)(x3),抛物线ya(x1)(x3)(a0)的图象经过点C(0,6),6a(01)(03),a2,抛物线解析式为:y2(x1)(x3)2x28x+6;(2)y2x28x+62(x2)22,顶点M的坐标为(2,2),抛物线的顶点M与对称轴l上的点N关于x轴对称,点N(2,2),设直线AN解析式为:ykx+b,由题意可得:,解得:,直线AN解析式为:y2x2,联立方程组得:,解得:,点D(4,6),SABD266,设点E(m,2m2),直线BE将ABD的面积分为1:2两部分,SABESABD2或SABESABD4,2(2m2)2或2(2m2)4,m2或3,点E(2,2)或(3,4);(3)若AD为平行四边形的边,以A、D、P、Q为顶点的四边形为平行四边形,ADPQ,xDxAxPxQ或xDxAxQxP,xP41+25或xP24+11,点P坐标为(5,16)或(1,16);若AD为平行四边形的对角线,以A、D、P、Q为顶点的四边形为平行四边形,AD与PQ互相平分,xP3,点P坐标为(3,0),综上所述:当点P坐标为(5,16)或(1,16)或(3,0)时,使A、D、P、Q为顶点的四边形为平行四边形【考点】本题是二次函数综合题,考查了待定系数法求解析式,一次函数的性质,平行四边形的性质,利用分类讨论思想解决问题是本题的关键

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 语文

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1