1、人教版九年级数学上册第二十三章旋转专项测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,和都是等腰直角三角形,四边形是平行四边形,下列结论中错误的是()A以点为旋转中心,逆时针方向旋转后与重合B以
2、点为旋转中心,顺时针方向旋转后与重合C沿所在直线折叠后,与重合D沿所在直线折叠后,与重合2、在下列面点烘焙模具中,其图案是中心对称图形的是()ABCD3、如图,在坐标系中放置一菱形 OABC,已知ABC=60,点 B 在 y 轴上,OA=1,先将菱形 OABC 沿 x 轴的正方向无滑动翻转,每次翻转 60,连续翻转2019次,点 B 的落点依次为 B1,B2,B3,则 B2 019 的坐标为()A(1010,0)B(13105, )C(1345, )D(1346,0)4、如图,在中,将绕点顺时针旋转得到,点A、B的对应点分别是,点是边的中点,连接,则下列结论错误的是()AB,CD5、如图,在平
3、面直角坐标系xOy中,ABC顶点的横、纵坐标都是整数若将ABC以某点为旋转中心,旋转得到ABC,则旋转中心的坐标是()A(1,1)B(1,1)C(0,0)D(1,2)6、如图,将ABC绕点B顺时针旋转50得DBE,点C的对应点恰好落在AB的延长线上,连接AD,下列结论不一定成立的是()AAB=DBBCBD=80CABD=EDABCDBE7、如图,边长为3的正五边形ABCDE,顶点A、B在半径为3的圆上,其他各点在圆内,将正五边形ABCDE绕点A逆时针旋转,当点E第一次落在圆上时,则点C转过的度数为()A12B16C20D248、如图,在方格纸上建立的平面直角坐标系中,将绕点按顺时针方向旋转90
4、,得到,则点的坐标为()ABCD9、下列四个图形中,中心对称图形是()ABCD10、如图,RtABC中,C=90,A=30,AB=20,点P是AC边上的一个动点,将线段BP绕点B顺时针旋转60得到线段BQ,连接CQ则在点P运动过程中,线段CQ的最小值为()A4B5C10D5第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,将等边绕顶点A顺时针方向旋转,使边AB与AC重合得,的中点E的对应点为F,则的度数是_2、如图,将绕点A逆时针旋转角得到,点B的对应点D恰好落在边上,若,则旋转角的度数是_3、如图,点E是正方形ABCD边BC上一点,连接AE,将ABE绕着点A逆时针
5、旋转到AFG的位置(点F在正方形ABCD内部),连接DG若AB10,BE6,则CH_ 4、如图,已知菱形ABCD的边长为2,A45,将菱形ABCD绕点A旋转45,得到菱形,其中B、C、D的对应点分别是,那么点的距离为_5、在平面直角坐标系中,直角如图放置,点A的坐标为,每一次将绕点O逆时针旋转90,第一次旋转后得到,第二次旋转后得到,依次类推,则点的坐标为_三、解答题(5小题,每小题10分,共计50分)1、如图,方格纸上每个小正方形的边长均为1个单位长度,点A、B都在格点上(两条网格线的交点叫格点)(1)将线段AB向上平移两个单位长度,点A的对应点为点,点B的对应点为点,请画出平移后的线段;(
6、2)将线段绕点按逆时针方向旋转,点的对应点为点,请画出旋转后的线段;(3)连接、,求的面积2、如图,点在射线上,如果绕点按逆时针方向旋转到,那么点的位置可以用表示(1)按上述表示方法,若,则点的位置可以表示为_;(2)在(1)的条件下,已知点的位置用表示,连接、求证:3、如图,在中,将绕点A旋转一定的角度得到,且点E恰好落在边上(1)求证:平分;(2)连接,求证:4、如图,点,分别在正方形的边,上,且,把绕点顺时针旋转得到(1)求证:(2)若,求正方形的边长5、如图所示的正方形网格中,每个小正方形的边长都为1,的顶点都在网格线的交点上,点B坐标为,点C的坐标为(1)根据上述条件,在网格中画出平
7、面直角坐标系;(2)画出关于x轴对称图形;(3)点A绕点B顺时针旋转90,点A对应点的坐标为_-参考答案-一、单选题1、B【解析】【分析】本题通过观察全等三角形,找旋转中心,旋转角,逐一判断【详解】解:A根据题意可知AE=AB,AC=AD,EAC=BAD=,EACBAD,旋转角EAB=90,不符合题意;B因为平行四边形是中心对称图形,要想使ACB和DAC重合,ACB应该以对角线的交点为旋转中心,顺时针旋转180,即可与DAC重合,符合题意;C根据题意可EAC=135,EAD=360EACCAD=135,AE=AE,AC=AD,EACEAD,不符合题意;D根据题意可知BAD=135,EAD=36
8、0BADBAE=135,AE=AB,AD=AD,EADBAD,不符合题意故选B【考点】本题主要考查平行四边形的对称性:平行四边形是中心对称图形,对称中心是两对角线的交点2、D【解析】【分析】根据中心对称图形的性质得出图形旋转180,与原图形能够完全重合的图形是中心对称图形,分别判断得出即可【详解】解:A.不是中心对称图形,不符合题意;B.不是中心对称图形,不符合题意;C.不是中心对称图形,不符合题意;D.是中心对称图形,符合题意;故选:D【考点】此题主要考查了中心对称图形的性质,根据中心对称图形的定义判断图形是解决问题的关键3、D【解析】【分析】连接AC,根据条件可以求出AC,画出第5次、第6
9、次、第7次翻转后的图形,容易发现规律:每翻转6次,图形向右平移4由于2019=3366+3,因此点向右平移(即)即可到达点,根据点的坐标就可求出点的坐标【详解】连接AC,如图所示四边形OABC是菱形,OA=AB=BC=OCABC=60,ABC是等边三角形AC=ABAC=OAOA=1,AC=1由图可知:每翻转6次,图形向右平移42019=3366+3,点B3向右平移1344(即3364)到点B2019B3的坐标为(2,0),B2019的坐标为(1346,0),故选:D【考点】本题考查了菱形的性质、等边三角形的判定与性质等知识,考查了操作、探究、发现规律的能力发现“每翻转6次,图形向右平移4”是解
10、决本题的关键4、D【解析】【分析】根据旋转的性质可判断A;根据直角三角形的性质、三角形外角的性质、平行线的判定方法可判断B;根据平行四边形的判定与性质以及全等三角形的判定与性质可判断C;利用等腰三角形的性质和含30角的直角三角形的性质可判断D【详解】A将ABC绕点C顺时针旋转60得到DEC,BCE=ACD=60,CB=CE,BCE是等边三角形,BE=BC,故A正确; B点F是边AC中点,CF=BF=AF=AC,BCA=30,BA=AC,BF=AB=AF=CF,FCB=FBC=30,延长BF交CE于点H,则BHE=HBC+BCH=90,BHE=DEC=90,BF/ED,AB=DE,BF=DE,故
11、B正确CBFED,BF=DE,四边形BEDF是平行四边形,BC=BE=DF, AB=CF, BC=DF,AC=CD,ABCCFD,故C正确;DACB=30, BCE=60,FCG=30,FG=CG,CG=2FGDCE=CDG=30,DG=CG,DG=2FG故D错误故选D【考点】本题考查了旋转的性质,全等三角形的判定与性质,等边三角形的判定与性质,含30角的直角边等于斜边的一半,以及平行四边形的判定与性质等知识,综合性较强,正确理解旋转性质是解题的关键5、A【解析】【分析】对应点连线的垂直平分线的交点即为旋转中心,然后直接写成坐标即可【详解】解:如图点O即为旋转中心,坐标为O(1,1) 故选:A
12、【考点】本题主要考查了旋转中心的确定方法,熟练掌握对应点连线的垂直平分线的交点即为旋转中心是解题的关键6、C【解析】【分析】利用旋转的性质得ABCDBE ,BA=BD,BC=BE,ABD=CBE=50,C=E,再由A、B、E三点共线,由平角定义求出CBD=80,由三角形外角性质判断出ABDE【详解】解:ABC绕点B顺时针旋转50得DBE, AB=DB,BC=BE,ABD=CBE=50,ABCDBE ,故选项A、D一定成立;点C的对应点E恰好落在AB的延长线上,ABD+CBE+CBD =180,.CBD=180-50-50=80,故选项B一定成立;又 ABD=E+BDE,ABDE,故选项C错误,
13、故选C【考点】本题主要考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等7、A【解析】【分析】根据点E旋转的角度和点C旋转的角度相等,所以求出点E旋转的角度即可.【详解】解: 如图设圆心为O,连接OA, OB,点E落在圆上的点E处.AB=OA=OB,OAB=,同理OAE=,EAB=,EAO=EAB-OAB=,EAE=OAE-EAO=-=点E旋转的角度和点C旋转的角度相等,点C旋转的角度为,故选A.【考点】本题主要考查旋转的性质,注意与圆的性质的综合.8、A【解析】【分析】根据网格结构作出旋转后的图形,然后根据平面直角坐标系写出点B的坐标
14、即可【详解】ABO如图所示,点B(2,1)故选A【考点】本题考查了坐标与图形变化,熟练掌握网格结构,作出图形是解题的关键9、D【解析】【分析】根据中心对称图形的概念结合各图形的特点求解【详解】解:A、不是中心对称图形,不符合题意; B、不是中心对称图形,不符合题意; C、不是中心对称图形,不符合题意; D、是中心对称图形,符合题意 故选:D【考点】本题考查了中心对称图形与轴对称图形的概念判断中心对称图形是要寻找对称中心,图形旋转180度后与原图形重合10、D【解析】【分析】将RtABC绕点B顺时针旋转60得到,再设线段的中点为M,并连接CM根据线段BP的旋转方式确定点Q在线段上运动,再根据垂线
15、段最短确定当Q与点M重合时,CQ取得最小值为CM根据C=90,A=30,AB=20求出BC的长度,再根据旋转的性质求出和的长度,根据线段的和差关系确定点C是线段的中点,进而确定CM是的中位线,再根据三角形中位线定理即可求出CM的长度【详解】解:如下图所示,将RtABC绕点B顺时针旋转60得到,再设线段的中点为M,并连接CM点P是AC边上的一个动点,线段BP绕点B顺时针旋转60得到线段BQ,点Q在线段上运动当,即点Q与点M重合时,线段CQ取得最小值为CMC=90,A=30,AB=20,BC=10RtABC绕点B顺时针旋转60得到,=BC=10,点C是线段中点点M是线段的中点,CM是的中位线故选:
16、D【考点】本题考查旋转的性质,直角三角形30所对的直角边是斜边的一半,垂线段最短,三角形中位线定理,综合应用这些知识点是解题关键二、填空题1、【解析】【分析】根据等边三角形的性质以及旋转的性质得出旋转角,进而得出EAF的度数【详解】将等边ABC绕顶点A顺时针方向旋转,使边AB与AC重合得ACD,BC的中点E的对应点为F,旋转角为60,E,F是对应点,则EAF的度数为:60故答案为:60【考点】此题主要考查了等边三角形的性质以及旋转的性质,得出旋转角的度数是解题关键2、【解析】【分析】先求出,由旋转的性质,得到,则,即可求出旋转角的度数【详解】解:根据题意,由旋转的性质,则,;旋转角的度数是50
17、;故答案为:50【考点】本题考查了旋转的性质,三角形的内角和定理,解题的关键是熟练掌握旋转的性质进行计算3、【解析】【分析】由“HL”可证,可得,由“AAS”可证,可得,可得,再由勾股定理可求AP、FN、DH,即可求解【详解】如图,连接AH,过点F作FNCD于点N,FPAD于点P,将ABE绕着点A逆时针旋转到AFG的位置,四边形ABCD是正方形,又,FNCD,FPAD,四边形PDNF是矩形,故答案为:【考点】本题考查了旋转的性质,正方形的性质、矩形的判定与性质,全等三角形的判定和性质及勾股定理,熟练掌握知识点是解题的关键4、【解析】【分析】首先由菱形的性质可知,由旋转的性质可知:,从而可证明为
18、直角三角形,然后由勾股定理即可求得的长度【详解】解:如图所示:四边形ABCD为菱形,由旋转的性质可知:,在中,故答案为:【考点】本题主要考查的是旋转的性质和菱形的性质以及勾股定理的应用,证得为直角三角形是解题的关键5、(,)【解析】【分析】由题意可得,(,),根据题意,每旋转四次,点B就又回到第一象限,用可知点在第三象限,即可得到答案【详解】在直角中,点A的坐标为,(,)由已知可得:第一次旋转后,如图,在第二象限,(,)第二次旋转后,在第三象限,(,)第三次旋转后,在第四象限,(,)第四次旋转后,在第一象限,(,)如此,旋转4次一循环点在第三象限,(,)故答案为:(,)【考点】本题考查了旋转变
19、换,涉及含30度角的直角三角形,确定旋转几次一循环是解题的关键三、解答题1、(1)见解析;(2)见解析;(3).【解析】【分析】(1)根据网格结构找出点、的位置,然后顺次连接即可;(2)根据网格结构找出点的位置,然后连接即可;(3)利用正方形的面积减去三个三角形的面积,列式计算即可得解【详解】(1)线段如图所示;(2)线段如图所示;(3)【考点】本题考查了平移变换和旋转变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键2、 (1)(3,37)(2)见解析【解析】【分析】(1)根据点的位置定义,即可得出答案;(2)画出图形,证明AOABOA(SAS),即可由全等三角形的性质,得出结论(1
20、)解:由题意,得A(a,n),a=3,n=37,A(3,37),故答案为:(3,37);(2)证明:如图,B(3,74),AOA=37,AOB=74,OA= OB=3,AOB=AOB-AOA=74-37=37,OA=OA,AOABOA(SAS),AA=AB【考点】本题考查全等三角形的判定与性质,新定义,旋转的性质,熟练掌握全等三角形的判定与性质是解题的关键3、 (1)证明见解析(2)证明见解析【解析】【分析】(1)根据旋转性质得到对应边相等,对应角相等,进而根据等边对等角性质可将角度进行等量转化,最后可证得结论(2)根据旋转性质以及三角形内角和定理对角度进行等量转化可证得结论(1)证明:由旋转
21、性质可知:平分(2)证明:如图所示:由旋转性质可知:即在中,即【考点】本题考查了三角形的旋转变化,熟练掌握旋转前后图形的对应边相等,对应角相等以及合理利用三角形内角和定理是解决本题的关键4、(1)证明见解析;(2)正方形的边长为6【解析】【分析】(1)先根据旋转的性质可得,再根据正方形的性质、角的和差可得,然后根据三角形全等的判定定理即可得证;(2)设正方形的边长为x,从而可得,再根据旋转的性质可得,从而可得,然后根据三角形全等的性质可得,最后在中,利用勾股定理即可得【详解】(1)由旋转的性质得:四边形ABCD是正方形,即,即在和中,;(2)设正方形的边长为x,则由旋转的性质得:由(1)已证:
22、又四边形ABCD是正方形则在中,即解得或(不符题意,舍去)故正方形的边长为6【考点】本题考查了正方形的性质、旋转的性质、三角形全等的判定定理与性质、勾股定理等知识点,较难的是题(2),熟练掌握旋转的性质与正方形的性质是解题关键5、 (1)见解析(2)见解析(3)(2,2)【解析】【分析】(1)根据点B坐标为,点C的坐标为确定原点,再画出坐标系即可;(2)画出三角形顶点的对称点,再顺次连接即可;(3)画出旋转后点的位置,写出坐标即可(1)解:坐标系如图所示,(2)解:如图所示,就是所求作三角形;(3)解:如图所示,点A绕点B顺时针旋转90的对应点为,坐标为(2,2);故答案为:(2,2)【考点】本题考查了平面直角坐标系作图,解题关键是明确轴对称和旋转的性质,准确作出图形,写出坐标