1、【2012高考真题辽宁理20】(本小题满分12分) 如图,椭圆:,a,b为常数),动圆,。点分别为的左,右顶点,与相交于A,B,C,D四点。 ()求直线与直线交点M的轨迹方程; ()设动圆与相交于四点,其中,。若矩形与矩形的面积相等,证明:为定值。【答案】22.【2012高考真题湖北理】(本小题满分13分)设是单位圆上的任意一点,是过点与轴垂直的直线,是直线与 轴的交点,点在直线上,且满足. 当点在圆上运动时,记点M的轨迹为曲线()求曲线的方程,判断曲线为何种圆锥曲线,并求其焦点坐标; ()过原点且斜率为的直线交曲线于,两点,其中在第一象限,它在轴上的射影为点,直线交曲线于另一点. 是否存在,
2、使得对任意的,都有?若存在,求的值;若不存在,请说明理由. 故存在,使得在其对应的椭圆上,对任意的,都有. 23.【2012高考真题北京理19】(本小题共14分)【答案】解:(1)原曲线方程可化简得:由题意可得:,解得:24.【2012高考真题广东理20】(本小题满分14分)在平面直角坐标系xOy中,已知椭圆C1:的离心率e=,且椭圆C上的点到Q(0,2)的距离的最大值为3.(1)求椭圆C的方程;(2)在椭圆C上,是否存在点M(m,n)使得直线:mx+ny=1与圆O:x2+y2=1相交于不同的两点A、B,且OAB的面积最大?若存在,求出点M的坐标及相对应的OAB的面积;若不存在,请说明理由【答
3、案】本题是一道综合性的题目,考查直线、圆与圆锥曲线的问题,涉及到最值与探索性问题,意在考查学生的综合分析问题与运算求解的能力。25.【2012高考真题重庆理20】(本小题满分12分()小问5分()小问7分) 如图,设椭圆的中心为原点O,长轴在x轴上,上顶点为A,左右焦点分别为,线段 的中点分别为,且 是面积为4的直角三角形.()求该椭圆的离心率和标准方程;()过 做直线交椭圆于P,Q两点,使,求直线的方程【答案】26.【2012高考真题四川理21】(本小题满分12分) 如图,动点到两定点、构成,且,设动点的轨迹为。()求轨迹的方程;()设直线与轴交于点,与轨迹相交于点,且,求的取值范围。【答案】本题主要考查轨迹方程的求法,圆锥曲线的定义等基础知识,考查基本运算能力,逻辑推理能力,考查方程与函数、数形结合、分类讨论、化归与转化等数学思想 27.【2012高考真题新课标理20】(本小题满分12分)设抛物线的焦点为,准线为,已知以为圆心,为半径的圆交于两点;(1)若,的面积为;求的值及圆的方程;(2)若三点在同一直线上,直线与平行,且与只有一个公共点,求坐标原点到距离的比值.【答案】(1)由对称性知:是等腰直角,斜边 点到准线的距离 圆的方程为