1、京改版八年级数学上册第十二章三角形专题训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,点P是以A为圆心,AB为半径的圆弧与数轴的交点,则数轴上点P表示的实数是()A-2B-2.2C-D-+12、
2、一条船从海岛A出发,以15海里/时的速度向正北航行,2小时后到达海岛B处灯塔C在海岛在海岛A的北偏西42方向上,在海岛B的北偏西84方向上则海岛B到灯塔C的距离是()A15海里B20海里C30海里D60海里3、以下四个标志,每个标志都有图案和文字说明,其中的图案是轴对称图形是()ABCD4、如图,在四边形ABCD中,A=60,B=D=90,AD=8,AB=7,则BC+CD等于()A6B5C4D35、给出下列命题,正确的有()个等腰三角形的角平分线、中线和高重合; 等腰三角形两腰上的高相等; 等腰三角形最小边是底边;等边三角形的高、中线、角平分线都相等;等腰三角形都是锐角三角形A1个B2个C3个
3、D4个6、如图,在中,则的长为()ABCD7、能说明“锐角,锐角的和是锐角”是假命题的例证图是()ABCD8、如图,在RtABC中,ABC90,分别以点A和点B为圆心,大于AB的长为半径作弧相交于点D和点E,直线DE交AC于点F,交AB于点G,连接BF,若BF3,AG2,则BC()A5B4C2D29、将一副三角尺按如图所示的方式摆放,则的大小为()ABCD10、下图所示的五角星是用螺栓将两端打有孔的5根木条连接构成的图形,它的形状不稳定,如果在木条交叉点打孔加装螺栓的办法使其形状稳定,那么至少需要添加()个螺栓A1B2C3D4第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)
4、1、如图,在ABC中,点D是AC的中点,分别以AB,BC为直角边向ABC外作等腰直角三角形ABM和等腰直角三角形BCN,其中ABMNBC90,连接MN,已知MN4,则BD_2、如图,CA=CB,CD=CE,ACB=DCE=50,AD、BE交于点H,连接CH,则CHE=_3、一辆汽车的牌照在车下方水坑中的像是,则这辆汽车的牌照号码应为_4、如图,已知 O 为ABC 三边垂直平分线的交点,且A50,则BOC 的度数为_度 5、已知:如图,在中,点在边上,则_度三、解答题(5小题,每小题10分,共计50分)1、已知a、b、c是ABC的三边,且满足,且a+b+c=12,请你探索ABC的形状2、如图,在
5、中,且,点是斜边的中点,E、F分别是AB、AC边上的点,且连接(1)求证:;(2)如图,若,则的面积为_3、如图和都是等腰直角三角形,顶点在的斜边上,求证:4、如图,点E在CD上,BC与AE交于点F,AB=CB,BE=BD,1=2(1)求证:;(2)证明:1=35、如图,在ABC和DCE中,ACDE,BDCE90,点A,C,D依次在同一直线上,且ABDE(1)求证:ABCDCE;(2)连结AE,当BC5,AC12时,求AE的长-参考答案-一、单选题1、D【解析】【分析】在三角形AOB中,利用勾股定理求出AB的长,即可确定出AP的长,得到P表示的实数.【详解】在RtAOB中,OA=1,OB=3,
6、根据勾股定理得:AB=,AP=AB=,OP=AP-OA=-1,则P表示的实数为-+1故选D【考点】本题考查了勾股定理,以及实数与数轴,熟练掌握勾股定理是解题的关键2、C【解析】【分析】根据题意画出图形,根据三角形外角性质求出C=CAB=42,根据等角对等边得出BC=AB,求出AB即可【详解】解:根据题意得:CBD=84,CAB=42,C=CBD-CAB=42=CAB,BC=AB,AB=15海里/时2时=30海里,BC=30海里,即海岛B到灯塔C的距离是30海里故选C.【考点】本题考查了等腰三角形的性质和判定和三角形的外角性质,关键是求出C=CAB,题目比较典型,难度不大3、D【解析】【分析】根
7、据轴对称图形的定义判断即可【详解】A,B,C都不是轴对称图形,都不符合题意;D是轴对称图形,符合题意,故选D.【考点】本题考查了轴对称图形的定义,准确理解轴对称图形的定义是解题的关键4、B【解析】【分析】延长DC至E,构建直角ADE,解直角ADE求得DE,BE,根据BE解直角CBE可得BC,CE,进而求解【详解】如图,延长AB、DC相交于E,在RtADE中,可求得AE2-DE2=AD2,且AE=2AD,计算得AE=16,DE=8,于是BE=AE-AB=9,在RtBEC中,可求得BC2+BE2=CE2,且CE=2BC,BC=3,CE=6,于是CD=DE-CE=2,BC+CD=5故选B【考点】本题
8、考查了勾股定理的运用,考查了30角所对的直角边是斜边的一半的性质,本题中构建直角ADE求BE,是解题的关键5、B【解析】【详解】解:等腰三角形的顶角角平分线、底边上的中线和底边上的高重合,故本选项错误;等腰三角形两腰上的高相等,本选项正确; 等腰三角形最小边不一定底边,故本选项错误;等边三角形的高、中线、角平分线都相等,本选项正确;等腰三角形可以是钝角三角形,故本选项错误,故选B6、B【解析】【分析】根据等腰三角形性质求出B,求出BAC,求出DAC=C,求出AD=DC=4cm,根据含30度角的直角三角形性质求出BD,即可求出答案【详解】AB=AC,C=30,B=30,ABAD,AD=4cm,B
9、D=8cm,ADB=60C=30,DAC=C=30,CD=AD=4cm,BC=BD+CD=8+4=12cm故选B.【考点】本题考查了等腰三角形的性质,含30度角的直角三角形性质,三角形的内角和定理的应用,解此题的关键是求出BD和DC的长7、C【解析】【分析】先将每个图形补充成三角形,再利用三角形的外角性质逐项判断即得答案【详解】解:A、如图1,1是锐角,且1=,所以此图说明“锐角,锐角的和是锐角”是真命题,故本选项不符合题意; B、如图2,2是锐角,且2=,所以此图说明“锐角,锐角的和是锐角”是真命题,故本选项不符合题意;C、如图3,3是钝角,且3=,所以此图说明“锐角,锐角的和是锐角”是假命
10、题,故本选项符合题意;D、如图4,4是锐角,且4=,所以此图说明“锐角,锐角的和是锐角”是真命题,故本选项不符合题意故选:C【考点】本题考查了真假命题、举反例说明一个命题是假命题以及三角形的外角性质等知识,属于基本题型,熟练掌握上述基本知识是解题的关键8、C【解析】【分析】利用线段垂直平分线的性质得到,再证明,利用勾股定理即可解决问题【详解】解:由作图方法得垂直平分,故选:【考点】本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线)方法是解题关键,同时还考查了线段垂直平分线的性质9、B【解析
11、】【分析】先根据直角三角板的性质得出ACD的度数,再由三角形内角和定理即可得出结论【详解】解:如图所示,由一副三角板的性质可知:ECD=60,BCA=45,D=90,ACD=ECDBCA=6045=15,=180DACD=1809015=75, 故选:B【考点】本题考查的是三角形内角和定理,熟知三角形内角和是180是解答此题的关键10、A【解析】【分析】用木条交叉点打孔加装螺栓的办法去达到使其形状稳定的目的,可用三角形的稳定性解释【详解】如图,A点加上螺栓后,根据三角形的稳定性,原不稳定的五角星中具有了稳定的各边故答案为:A【考点】本题考查了三角形的稳定性的问题,掌握三角形的稳定性是解题的关键
12、二、填空题1、2【解析】【分析】延长BD到E,使DE=BD,连接AE,证明ADECDB(SAS),可得AE=CB,EAD=BCD,再根据ABM和BCN是等腰直角三角形,证明MBNBAE,可得MN=BE,进而可得BD与MN的数量关系即可求解【详解】解:如图,延长BD到E,使DE=BD,连接AE,点D是AC的中点,AD=CD,在ADE和CDB中,ADECDB(SAS),AE=CB,EAD=BCD,ABM和BCN是等腰直角三角形,AB=BM,CB=NB,ABM=CBN=90,BN=AE,又MBN+ABC=360-90-90=180,BCA+BAC+ABC=180,MBN=BCA+BAC=EAD+BA
13、C=BAE,在MBN和BAE中,MBNBAE(SAS),MN=BE,BE=2BD,MN=2BD又MN=4,BD=2,故答案为:2【考点】本题考查了全等三角形的判定与性质、等腰直角三角形,解决本题的关键是掌握全等三角形的判定与性质2、65【解析】【分析】先判断出,再判断出即可得到平分,即可得出结论【详解】解:如图,在和中,;过点作于,于,在和中,在与中,平分;,故答案为:【考点】此题考查了全等三角形的判定与性质以及角平分线的定义此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用3、H8379【解析】【分析】易得所求的牌照与看到的牌照关于水平的一条直线成轴对称,作出相应图形即可求解【详
14、解】解:如图所示:该车牌照号码为:H8379故答案为:H8379【考点】本题考查轴对称的应用,熟练掌握轴对称的性质是解题关键 4、设第三边是x,则2008x20而三角形的周长是偶数,故x为偶数,因而x=2010或2012或2014,满足条件的三角形共有3个故答案为:3个【考点】本题考查了三角形的三边关系已知三角形的两边,则第三边的范围是:大于已知的两边的差,而小于两边的和16100【解析】【分析】连接AO延长交BC于D,根据线段垂直平分线的性质可得OB=OA=OC,再根据等腰三角形的等边对等角和三角形的外角性质可得BOC=2A,即可求解【详解】解:连接AO延长交BC于D,O 为ABC 三边垂直
15、平分线的交点,OB=OA=OC,OBA=OAB,OCA=OAC,BOD=OBA+OAB=2OAB,COD=OCA+OAC=2OAC,BOC=BOD+COD=2OAB+2OAC=2BAC,BAC=50,BOC=100故答案为:100【考点】本题考查线段垂直平分线的性质、等腰三角形的性质、三角形的外角性质,属于基础题型,熟练掌握它们的性质和运用是解答的关键5、40【解析】【分析】根据等边对等角得到,再根据三角形外角的性质得到,故,由三角形的内角和即可求解的度数【详解】解:,故答案为:40【考点】本题考查等腰三角形的性质、三角形外角的性质、三角形的内角和,熟练掌握几何知识并灵活运用是解题的关键三、解
16、答题1、ABC是直角三角形,理由见解析【解析】【分析】根据,可以设=k,然后根据a+b+c=12,可以求得k的值,进而求得a、b、c的值,再根据勾股定理的逆定理,即可判断ABC的形状【详解】解:令=k,a+4=3k,b+3=2k,c+8=4k,a=3k4,b=2k3,c=4k8,又a+b+c=12,(3k4)+(2k3)+(4k8)=12,k=3,a=5,b=3,c=4,32+42=52,ABC是直角三角形【考点】本题考查因式分解的应用、勾股定理的逆定理,解答此类问题的关键是明确题意,求出a、b、c的值2、(1)见解析;(2)【解析】【分析】(1)易证ADE=CDF,即可证明ADECDF;(2
17、)由(1)可得AE=CF,BE=AF,再根据DEF的面积=,即可解题【详解】(1)证明:AB=AC,D是BC中点,BAD=C=45,AD=BD=CD,ADE+ADF=90,ADF+CDF=90,ADE=CDF,在ADE和CDF中,ADECDF(ASA)(2)解:ADECDFAE=CF=5,BE=AF=12,AB=AC=17,DEF的面积=【考点】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证ADECDF是解题的关键3、证明见解析【解析】【分析】连结BD,易证,即BD=AE、AC=BC又可证明出ADB=90,再结合勾股定理即可得到所要证明的等式是成立的【详解】证明:如图
18、,连结BD ,在EAC和DBC中, 又, 在中, 在中, 【考点】本题考查等腰直角三角形的性质,全等三角形的判定和性质以及勾股定理灵活应用全等三角形的判定和性质是解题关键4、(1)证明见解析;(2)证明见解析【解析】【分析】(1)先根据角的和差可得,再根据三角形全等的判定定理即可得证;(2)先根据三角形全等的性质可得,再根据对顶角相等可得,然后根据三角形的内角和定理、等量代换即可得证【详解】(1),即,在和中,;(2)由(1)已证:,由对顶角相等得:,又,【考点】本题考查了三角形全等的判定定理与性质、对顶角相等、三角形的内角和定理等知识点,熟练掌握三角形全等的判定定理与性质是解题关键5、(1)见解析;(2)13【解析】【分析】根据题意可知,本题考查平行的性质,全等三角形的判定和勾股定理,根据判定定理,运用两直线平行内错角相等再通过AAS以及勾股定理进行求解【详解】解:(1)在ABC和DCE中ABCDCE(2)由(1)可得BC=CE=5在直角三角形ACE中【考点】本题考查平行的性质,全等三角形的判定和勾股定理,熟练掌握判定定理运用以及平行的性质是解决此类问题的关键