1、京改版八年级数学上册期中综合复习试题 A卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、计算的结果正确的是()A1BC5D92、关于x的分式方程30有解,则实数m应满足的条件是()Am2Bm2Cm2Dm2
2、3、下列算式正确的是()ABCD4、下列计算正确的是()ABCD5、下列说法:数轴上的任意一点都表示一个有理数;若、互为相反数,则;多项式是四次三项式;几个有理数相乘,如果负因数有奇数个,则积为负数,其中正确的有()A个B个C个D个二、多选题(5小题,每小题4分,共计20分)1、实数a,b,c,d在数轴上的对应点的位置如图所示,则不正确的结论是()Aa3b3B3c3dC1a1cDbd02、下列运算中,错误的是()ABCD3、下列二次根式中,最简二次根式是()ABCD4、在下列分式中,不能再约分化简的分式有()ABCD5、(多选)下列语句及写成式子不正确的是()A9是81的算术平方根,即B的平方
3、根是C1的立方根是D与数轴上的点一一对应的是实数第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、25的算数平方根是_,的相反数为_2、的有理化因式可以是_(只需填一个)3、已知,当分别取1,2,3,2020时,所对应值的总和是_4、某校学生捐款支援地震灾区,第一次捐款的总额为6600元,第二次捐款的总额为7260元,第二次捐款的总人数比第一次多30人,而且两次人均捐款额恰好相等,则第一次捐款的总人数为_人5、在,0.5,0,这些数中,是无理数的是_四、解答题(5小题,每小题8分,共计40分)1、计算:(1)()3()2(2)()2、已知关于x的方程有增根,求m的值3、甲
4、、乙两人加工同一种零件,甲每天加工的数量是乙每天加工数量的 1.5 倍,两人各加工 600 个这种零件,甲比乙少用 5 天(1)求甲、乙两人每天各加工多少个这种零件?(2)已知甲、乙两人加工这种零件每天的加工费分别是 150 元和 120 元,现有 3000 个这种零件的加工任务,甲单独加工一段时间后另有安排,剩余任务由乙单独完成如果总加工费不超过 7800 元,那么甲至少加工了多少天?4、计算:(1);(2)5、根据已学知识,我们已经能比较有理数的大小,下面介绍一种新的比较大小的方法:3210,32;(2)130,21;(2)(2)0,22像上面这样,根据两数之差是正数、负数或0,判断两数大
5、小关系的方法叫做作差法比较大小(1)请将上述比较大小的方法用字母表示出来:若,则_;若,则_;若,则_;(2)请用上述方法比较下列代数式的大小(直接在空格中填写答案)_;当时,_;(3)试比较与的大小,并说明理由-参考答案-一、单选题1、A【解析】【分析】利用二次根式的乘除法则计算即可得到结果【详解】解:,故选:A【考点】本题主要考查了二次根式的乘除法,熟练掌握运算法则是解题的关键2、B【解析】【分析】解分式方程得:即,由题意可知,即可得到.【详解】解:方程两边同时乘以得:,分式方程有解,故选B.【考点】本题主要考查了分式方程的解,熟练掌握分式方程的解法,理解分式方程有意义的条件是解题的关键.
6、3、D【解析】【分析】根据算术平方根的非负性,立方根的定义即可判断【详解】A、,故 A错误;B、,故B错误;C、,故C错误;D、,故D正确【考点】本题考查了算术平方根和立方根,掌握相关知识是解题的关键4、D【解析】【分析】根据二次根式的乘法运算法则对A、D选项进行判断,根据算术平方根的意义对B选项进行判断,根据积的乘方对C选项进行判断【详解】解: ,故A选项错误,D选项正确;,故B选项错误;,故C选项错误故选:D【考点】本题考查二次根式的运算及积的乘方熟练掌握各运算法则是解题关键5、C【解析】【分析】数轴上的点可以表示无理数,所以错误;若a,b互为相反数则a+b=0,则正确;是常数项,所以错误
7、;根据有理数的乘法法则可判断正确【详解】数轴上的点既可以表示有理数,也可以表示无理数,所以错误;若a,b互为相反数则a+b=0,则正确;是常数项,是三次三项式,故错误;根据有理数的乘法法则可判断正确.故正确的有,共2个故选C【考点】本题考查了实数与数轴、相反数、多项式、有理数的乘法,熟记概念是解题的关键二、多选题1、ABD【解析】【分析】依据实数a,b,c,d在数轴上的对应点的位置,即可得到a,b,c,d的大小关系,进而利用不等式的基本性质得出结论【详解】解:由实数a,b,c,d在数轴上的对应点的位置可知,ab,a3b3,故A选项符合题意;cd,3c3d,故B选项符合题意;ac,1a1c,故C
8、选项不符合题意;bd,bd0,故D选项符合题意;故选ABD【考点】本题考查了实数与数轴和不等式的基本性质,观察数轴,逐一分析四个选项的正误是解题的关键2、ABCD【解析】【分析】根据算术平方根和有理数的乘方的求解方法进行逐一求解判断即可【详解】解:A、 ,故此选项符合题意;B、=4,故此选项符合题意;C、根号里面不能为负,故此选项符合题意;D、 ,故此选项符合题意;故选ABCD【考点】本题主要考查了算术平方根和有理数的乘方,解题的关键在于能够熟练掌握相关计算方法3、CD【解析】【分析】根据最简二次根式的定义:1、被开方数中不含能开得尽方的因数或因式;2、被开方数的因数是整数,因式是整式,那么,
9、这个根式叫做最简二次根式,据此判断即可【详解】解:A、,不是最简二次根式,不符合题意;B、不是最简二次根式,不符合题意;C、是最简二次根式,符合题意;D、是最简二次根式,符合题意;故选:CD【考点】本题考查了最简二次根式,熟知最简二次根式的定义是解本题的关键4、BC【解析】【分析】根据最简分式的定义:如果一个分式中没有可约的因式,则为最简分式,据此判断即可【详解】解:A、,不是最简分式,可以再约分,不合题意;B、,是最简分式,不能再约分,符合题意;C、,是最简分式,不能再约分,符合题意;D、,不是最简分式,可以再约分,不合题意;故选:BC【考点】本题考查了最简分式的概念,熟记定义是解本题的关键
10、5、ABC【解析】【分析】根据平方根,算术平方根、立方根以及数轴与实数的关系逐项进行判断即可【详解】解:A、9是81的算术平方根,即=9,因此选项A符合题意;B、a2的平方根为=a,因此选项B符合题意;C、1的立方根是1,因此选项C符合题意;D、实数与数轴上的点一一对应,因此选项D不符合题意;故答案为:ABC【考点】本题考查了平方根、算术平方根、立方根以及数轴与实数,理解平方根、算术平方根、立方根的意义是正确判断的前提三、填空题1、 5 3【解析】【分析】根据算术平方根的定义和实数的相反数分别填空即可【详解】25的算数平方根是5;的相反数为3;故答案为:5,3【考点】本题考查了实数的性质,主要
11、利用了算术平方根,立方根的定义以及相反数的定义,熟记概念与性质是解题的关键2、【解析】【分析】根据平方差公式和有理化因式的意义即可得出答案【详解】解:,的有理化因式为,故答案为:【考点】本题考查分母有理化,理解有理化因式的意义和平方差公式是正确解答的关键3、【解析】【分析】先化简二次根式求出y的表达式,再将x的取值依次代入,然后求和即可得【详解】当时,当时,则所求的总和为故答案为:【考点】本题考查了二次根式的化简求值、绝对值运算等知识点,掌握二次根式的化简方法是解题关键4、300【解析】【分析】先设第一次的捐款人数是x人,根据两次人均捐款额恰好相等列出方程,求出x的值,再进行检验即可求出答案【
12、详解】解:设第一次的捐款人数是x人,根据题意得:,解得:x300,经检验x300是原方程的解,故答案为300【考点】此题考查了分式方程的应用,解题的关键是读懂题意,找出之间的等量关系,列出方程,解分式方程时要注意检验5、【解析】【分析】根据无理数的概念:无限不循环小数是无理数进行分类即可【详解】在,0.5,0,这些数中,只有是无理数,其余都是有理数故答案为:【考点】本题考查了实数的分类,关键是掌握无理数的概念:无限不循环小数是无理数四、解答题1、(1);(2)【解析】【分析】(1)先计算乘方、将除法转化为乘法,再约分即可得;(2)先计算括号内异分母分式的减法、除法转化为乘法,再约分即可得【详解
13、】解:(1)原式();(2)原式【考点】本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则2、m3或5时【解析】【分析】根是分式方程化为整式方程后产生的使分式方程的分母为0的根有增根,那么最简公分母x(x1)0,所以增根是x0或1,把增根代入化为整式方程的方程即可求出m的值【详解】解:方程两边都乘x(x1),得3(x1)6xxm,原方程有增根,最简公分母x(x1)0,解得x0或1,当x0时,m3;当x1时,m5.故当m3或5时,原方程有增根【考点】本题考查的是分式方程,熟练掌握分式方程是解题的关键.3、(1)乙每天加工40个幂件,甲每天加工60个件;(2)甲至少加工40天
14、.【解析】【分析】(1)设乙每天加工x个零件,则甲每天加工1.5x个零件,根据甲比乙少用5天,列分式方程求解;(2)设甲加工了x天,乙加工了y天,根据3000个零件,列方程;根据总加工费不超过7800元,列不等式,方程和不等式综合考虑求解即可【详解】(1)设乙每天加工x个零件,则甲每天加工1.5x个零件化简得6001.5=600+51.5x解得x=401.5x=60经检验,x=40是分式方程的解且符合实际意义答:甲每天加工60个零件,乙每天加工,40个零件.(2)设甲加工了x天,乙加工了y天,则由题意得 由得y=75-1.5x 将代入得150x+120(75-1.5x)7800解得x40,当x
15、=40时,y=15,符合问题的实际意义答:甲至少加工了40天【考点】本题是分式方程与不等式的实际应用题,题目数量关系清晰,难度不大4、(1);(2)【解析】【分析】(1)根据二次根式的性质,求一个数的立方根,化简绝对值,进而根据实数的性质进行计算即可;(2)根据平方差公式,二次根式的除法运算进行计算即可【详解】(1)解:原式, (2)解:原式,【考点】本题考查了实数的混合运算,二次根式的除法运算,掌握二次根式的性质以及二次根式的运算法则是解题的关键5、 (1),=,(2),(3),理由见详解【解析】【分析】(1)根据作差法可作答;(2)利用作差法即可作答;(3)结合整式的加减混合运算法则,利用作差法即可作答;(1),;,;,故答案为:、=、;(2),;,又,故答案为:、;(3),理由如下:,又,【考点】本题考查了实数比较大小、二次根式的加减混合运算、整式的加减混合运算等知识,掌握相关的加减混合运算法则是解答本题的关键