1、第四章电磁感应学案9 涡流、电磁阻尼和电磁驱动目标定位 1.知道涡流的产生原因及涡流的防止和应用.2.知道电磁阻尼和电磁驱动的原理和应用.知识探究 自我检测 一、涡流 问题设计 1.如图1所示,当磁场变化时,导体中就会产生感应电流,那么导体中的电荷为什么会定向移动而形成电流?知识探究 答案 根据麦克斯韦电磁场理论:变化的磁场会在其周围空间产生感生电场,感生电场对导体中的自由电荷产生的电场力会使电荷定向移动,从而形成电流.图12.如果磁场是用变化的电流来获取的,导体用整块铁代替,如图2所示.请问铁块中有感应电流吗?如果有,它的形状像什么?图2答案 有.变化的电流产生变化的磁场,变化的磁场产生感生
2、电场,感生电场在铁块中产生感应电流,它的形状像水中的旋涡,所以把它叫做涡电流,简称涡流.要点提炼 1.定义:当线圈中的电流随时间变化时,由于,在附近导体中产生像水中旋涡样的感应电流,所以把这种感应电流叫做.2.决定因素:磁场变化越快(越大),导体的横截面积S越,导体材料的电阻率越,形成的涡流就越大.Bt电磁感应涡流大小3.应用:、机场安检等.4.防止:电动机、变压器等设备中应防止涡流过大而导致浪费能量,损坏电器.可增大铁芯材料的、用相互绝缘的叠成的铁芯代替整块硅钢铁芯.真空冶炼探测地雷电阻率硅钢片二、电磁阻尼和电磁驱动 问题设计 1.电磁阻尼 弹簧上端固定,下端悬挂一根磁铁.将磁铁托起到某一高
3、度后放开,磁铁能上下振动较长时间才停下来.如果在磁铁下端放一个固定的闭合线圈,使磁铁上下振动时穿过它(如图3所示),磁铁就会很快停下来,解释这个现象.图3答案 当磁铁穿过固定的闭合线圈时,在闭合线圈中会产生感应电流,感应电流的磁场会阻碍磁铁靠近或离开线圈,也就使磁铁振动时除了受空气阻力外,还有线圈的磁场力作为阻力,克服阻力需要做的功较多,弹簧振子的机械能损失较快,因而会很快停下来.2.电磁驱动 一个闭合线圈放在蹄形磁铁的两磁极之间,如图4所示,蹄形磁铁和闭合线圈都可以绕OO轴转动.当蹄形磁铁顺时针转动时线圈也顺时针转动,当磁铁逆时针转动时线圈也逆时针转动.图4根据以上现象,回答下列问题:(1)
4、蹄形磁铁转动时,穿过线圈的磁通量是否变化?答案 变化.(2)线圈转动起来的动力是什么力?线圈的转动速度与磁铁的转动速度相同吗?答案 线圈内产生感应电流受到安培力的作用,安培力作为动力使线圈转动起来.线圈的转速小于磁铁的转速.要点提炼 1.电磁阻尼(1)定义:当时,感应电流会使导体受到,安培力的方向总是导体的运动,这种现象称为.(2)应用:电磁阻尼中需要克服安培力做功,其他形式的能转化为电能,最终转化为内能.所以磁电式仪表中利用电磁阻尼使指针迅速停止,便于读数.导体在磁场中运动安培力阻碍电磁阻尼2.电磁驱动(1)定义:如果转动,在导体中会产生,感应电流使导体受到安培力的作用,使导体运动起来,这种
5、作用常称为电磁驱动.注意:电磁驱动中导体的运动速度要磁场的运动速度.(2)应用:电磁驱动中导体受安培力的方向与导体运动方向,做功,导体运动,电能转化为机械能.所以利用电磁驱动发明了交流感应电动机.磁场相对于导体感应电流安培力小于相同安培力推动3.电磁阻尼与电磁驱动的联系:电磁阻尼与电磁驱动现象中安培力的作用效果均为相对运动.阻碍典例精析一、涡流的理解与应用例1 如图5所示是高频焊接原理示意图.线圈中通以高频变化的电流时,待焊接的金属工件中就产生感应电流,感应电流通过焊缝产生大量热,将金属熔化,把工件焊接在一起,而工件其他部分发热很少,以下说法正确的是()图5A.电流变化的频率越高,焊缝处的温度
6、升高的越快 B.电流变化的频率越低,焊缝处的温度升高的越快 C.工件上只有焊缝处温度升的很高是因为焊缝处的电阻小 D.工件上只有焊缝处温度升的很高是因为焊缝处的电阻大 解析 交流电频率越高,则产生的感应电流越强,升温越快,故A项对.工件上各处电流相同,电阻大处产生的热量多,故D项对.答案 AD 针对训练 光滑曲面与竖直平面的交线是抛物线,如图6所示,抛物线的方程是yx2,下半部处在一个水平方向的匀强磁场中,磁场的上边界是ya的直线(图中的虚线所示),一个小金属块从抛物线上yb(ba)处以初速度v沿抛物线下滑.假设抛物线足够长,金属块沿抛物线下滑后产生的焦耳热总量是()图6A.mgbB.12mv
7、2C.mg(ba)D.mg(ba)12mv2思路点拨 金属块进出磁场时,由于涡流现象产生焦耳热而使机械能减少.解答本题首先应明确金属块的初、末状态,然后根据金属块机械能的变化确定所产生的焦耳热总量.解析 金属块进出磁场时,会产生焦耳热,损失机械能而使金属块所能达到的最高位置越来越低,当金属块所能达到的最高位置为ya时,金属块不再进出磁场,不再产生焦耳热.金属块的机械能不再损失,而在磁场中做往复运动.由于金属块减少的动能和重力势能全部转化为内能,所以 Q|EpEk|mg(ba)12mv2.答案 D 二、对电磁阻尼的理解例2 如图7所示,一狭长的铜片能绕O点在纸平面内摆动,有界磁场的方向垂直纸面向
8、里,铜片在摆动时受到较强的阻尼作用,很快就停止摆动.如果在铜片上开几个长缝,铜片可以在磁场中摆动较多的次数后才停止摆动,这是为什么?图7答案 没有开长缝的铜片在磁场中摆动时,铜片内将产生较大的涡流,涡流在磁场中所受的安培力总是阻碍铜片的摆动,因此铜片很快就停止摆动.如果在铜片上开有多条长缝,就可以把涡流限制在缝与缝之间的各部分铜片上,较大地削弱了涡流,阻力随之减小,所以铜片可以摆动多次后才停止摆动.三、对电磁驱动的理解例3 位于光滑水平面上的小车上放置一螺线管,一个比螺线管长的条形磁铁沿着螺线管的轴线以初速度v水平穿过,如图8所示,在此过程中()A.磁铁做匀速直线运动B.磁铁做减速运动 C.小
9、车向右做加速运动D.小车先加速后减速 图8解析 磁铁水平穿入螺线管时,管中将产生感应电流,由楞次定律知该电流产生的磁场的作用力阻碍磁铁的运动.同理,磁铁穿出时该电流产生的磁场的作用力也阻碍磁铁的运动,故整个过程中,磁铁做减速运动,B项对.而对于小车上的螺线管来说,在此过程中,螺线管受到的安培力都是水平向右,这个安培力使小车向右运动,且一直做加速运动,C项对.答案 BC 课堂要点小结 1 2 3 41.(涡流的理解)下列做法中可能产生涡流的是()A.把金属块放在匀强磁场中 B.让金属块在匀强磁场中做匀速运动 C.让金属块在匀强磁场中做变速运动 D.把金属块放在变化的磁场中 自我检测 1 2 3
10、4解析 涡流就是整个金属块中产生的感应电流,所以产生涡流的条件就是在金属块中产生感应电流的条件,即穿过金属块的磁通量发生变化.而A、B、C中磁通量不变化,所以A、B、C错误;把金属块放在变化的磁场中时,穿过金属块的磁通量发生了变化,有涡流产生,所以D正确.答案 D 1 2 3 42.(涡流的应用)安检门是一个用于安全检查的“门”,“门框”内有线圈,线圈里通有交变电流,交变电流在“门”内产生交变磁场,金属物品通过“门”时能产生涡流,涡流的磁场又反过来影响线圈中的电流,从而引起报警.以下关于这个安检门的说法正确的是()1 2 3 4A.这个安检门也能检查出毒品携带者 B.这个安检门只能检查出金属物
11、品携带者 C.如果这个“门框”的线圈中通上恒定电流,也能检查出金属物品携带者 D.这个安检门工作时,既利用了电磁感应现象,又利用了电流的磁效应 1 2 3 4解析 这个安检门是利用涡流工作的,因而只能检查出金属物品携带者,A错,B对.若“门框”的线圈中通上恒定电流,只能产生恒定磁场,它不能使块状金属产生涡流,因而不能检查出金属物品携带者,C错.安检门工作时,既利用了电磁感应现象,又利用了电流的磁效应,D对.答案 BD 1 2 3 43.(电磁阻尼的理解与应用)如图9所示,条形磁铁用细线悬挂在O点.O点正下方固定一个水平放置的铝线圈.让磁铁在竖直面内摆动,下列说法中正确的是()图91 2 3 4
12、A.磁铁左右摆动一次,线圈内感应电流的方向改变2次 B.磁铁始终受到感应电流磁场的斥力作用 C.磁铁所受到的感应电流对它的作用力始终是阻力 D.磁铁所受到的感应电流对它的作用力有时是阻力有时是动力 1 2 3 4解析 磁铁向下摆动时,根据楞次定律,线圈中产生逆时针方向的感应电流(从上面看),并且磁铁受到感应电流对它的作用力为阻力,阻碍它靠近;磁铁向上摆动时,根据楞次定律,线圈中产生顺时针方向的感应电流(从上面看),磁场受感应电流对它的作用力仍为阻力,阻碍它远离,所以磁铁在左右摆动一次过程中,电流方向改变3次,感应电流对它的作用力始终是阻力,只有C项正确.答案 C1 2 3 44.(电磁驱动的理解与应用)如图10所示,磁极远离和靠近圆环时产生的现象正确的是()图10A.图中磁铁N极接近A环时,A环被吸引,而后被推开 B.图中磁铁N极远离A环时,A环被排斥,而后随磁铁运动 C.用磁铁N极接近B环时,B环被排斥,远离磁铁运动 D.用磁铁的任意一磁极接近A环时,A环均被排斥 1 2 3 4解析 根据楞次定律,感应电流在回路中产生的磁通量总是反抗(或阻碍)原磁通量的变化,所以用磁铁的任意一磁极接近A环时,A环均被排斥;由于B环不是闭合回路,因此没有感应电流.答案 D