1、2015-2016学年江苏省南京市高淳区湖滨高中高一(下)期末数学试卷一、填空题(本大题共14小题,每小题5分,共70分)1已知集合A=x|x2x+10,B=x|x25x+40,则AB=2已知2x+2y=6,则2x+y的最大值是3 =4已知等比数列an的各项为正数,公比为q,若q2=4,则=5表面积为12的球的内接正方体的体积为6已知cos=,(,),则cos()的值为7在等差数列an中,若a2+a4+a6+a8+a10=80,则的值为8设,为两个不重合的平面,l,m,n为两两不重合的直线,给出下列四个命题:若,l,则l; 若m,n,m,n,则;若l,l,则; 若m、n是异面直线,m,n,且l
2、m,ln,则l其中真命题的序号是9已知,则tan(2)等于10在ABC中,三个内角A,B,C所对的边分别是a,b,c,已知c=2,C=,ABC的面积等于,则a+b=11等比数列an的公比为q(q0),其前项和为Sn,若S3,S9,S6成等差数列,则q3=12在ABC中角A,B,C对应边分别为a,b,c,若,那么c=13数列an的通项,其前n项和为Sn,则S30=14已知函数f(x)=满足对任意x1x2,都有0成立,则实数a的取值范围是二、解答题(本大题共6小题,共90分)15已知函数f(x)=(1)求f()的值;(2)当x0,)时,求g(x)=f(x)+sin2x的最大值和最小值16如图,在正
3、方体ABCDA1B1C1D1中,E、F为棱AD、AB的中点()求证:EF平面CB1D1;()求证:平面CAA1C1平面CB1D117数列an中,an=32,sn=63,(1)若数列an为公差为11的等差数列,求a1;(2)若数列an为以a1=1为首项的等比数列,求数列am2的前m项和sm18运货卡车以每小时x千米的速度匀速行驶130千米(50x100)(单位:千米/小时)假设汽油的价格是每升2元,而汽车每小时耗油(2+)升,司机的工资是每小时14元(1)求这次行车总费用y关于x的表达式;(2)当x为何值时,这次行车的总费用最低,并求出最低费用的值19在ABC中,已知tanAtanBtanAta
4、nB=(1)求C的大小;(2)设角A,B,C的对边依次为a,b,c,若c=2,且ABC是锐角三角形,求a2+b2的取值范围20设数列an为等比数列,数列bn满足bn=na1+(n1)a2+2an1+an,nN*,已知b1=m,其中m0()求数列an的首项和公比;()当m=1时,求bn;()设Sn为数列an的前n项和,若对于任意的正整数n,都有Sn1,3,求实数m的取值范围2015-2016学年江苏省南京市高淳区湖滨高中高一(下)期末数学试卷参考答案与试题解析一、填空题(本大题共14小题,每小题5分,共70分)1已知集合A=x|x2x+10,B=x|x25x+40,则AB=(,14,+)【考点】
5、交集及其运算【分析】分别求出集合A、B,取交集即可【解答】解:A=x|x2x+10=R,B=x|x25x+40=x|x4或x1,则AB=(,14,+),故答案为:(,14,+)2已知2x+2y=6,则2x+y的最大值是9【考点】基本不等式【分析】运用指数函数的值域,可得2x0,2y0,由基本不等式可得,2x+2y2,计算化简即可得到所求最大值【解答】解:由2x0,2y0,由基本不等式可得,2x+2y2=2,即为26,即有2x+y9当且仅当2x=2y,即x=y=log23时,取得最大值9故答案为:93 =【考点】两角和与差的正切函数;诱导公式的作用【分析】根据45=222.5,利用二倍角的正切公
6、式算出=1,即可得到的值为【解答】解:45=222.5,tan45=1即tan(222.5)=1,根据二倍角的正弦公式得: =1,可得=故答案为:4已知等比数列an的各项为正数,公比为q,若q2=4,则=【考点】等比数列的性质【分析】先求出q,再利用等比数列的通项公式,即可得出结论【解答】解:公比为q,q2=4,q=2,=故答案为:5表面积为12的球的内接正方体的体积为8【考点】球内接多面体【分析】求出球的半径,正方体的对角线是外接球的直径,然后求出想正方体的棱长,即可求出正方体的体积【解答】解:表面积为12的球的半径为:4r2=12,r=,正方体的对角线为:2;正方体的棱长为:2,正方体的体
7、积为:23=8故答案为:86已知cos=,(,),则cos()的值为【考点】两角和与差的余弦函数【分析】利用同角三角函数的基本关系求得sin的值,再利用两角差的余弦公式求得cos()的值【解答】解:cos=,(,),sin=,则cos()=coscos+sinsin=+()=,故答案为:7在等差数列an中,若a2+a4+a6+a8+a10=80,则的值为8【考点】等差数列的性质【分析】利用等差数列项之间的关系,把握好等差数列的性质进行解题,建立已知与未知之间的关系进行整体之间的转化【解答】解:由已知得:(a2+a10)+(a4+a8)+a6=5a6=80a6=16,又分别设等差数列首项为a1,
8、公差为d,则故答案为:88设,为两个不重合的平面,l,m,n为两两不重合的直线,给出下列四个命题:若,l,则l; 若m,n,m,n,则;若l,l,则; 若m、n是异面直线,m,n,且lm,ln,则l其中真命题的序号是【考点】命题的真假判断与应用【分析】由线面平行的性质(几何特征)可判断的真假;由面面平行的判定定理,可判断的真假;由线面平行的性质及面面垂直的判定定理可以判断的真假;由线面平行的性质及线面垂直的判定定理可以判断的真假【解答】解:若,l,则由面面平行的几何特征可得l,故正确;若m,n,m,n,但m,n可能不相交,由面面平行的判定定理可得不一定成立,故错误;若l,则存在m使ml,又由l
9、可得m,再由面面垂直的判定定理可得,故正确;若m、n是异面直线,m,n,则存在a,b,使am,bn,且a,b相交,再由lm,ln,可得la,lb,则由线面垂直的判定定理可得l,故正确故答案为:9已知,则tan(2)等于1【考点】两角和与差的正切函数【分析】把已知条件利用二倍角的余弦函数公式及同角三角函数间的基本关系化简后,即可求出tan的值,然后把所求式子中的角2变为(),利用两角差的正切函数公式化简后,将各自的值代入即可求出值【解答】解:由=2tan=1,得到tan=,又,则tan(2)=tan()= = =1故答案为:110在ABC中,三个内角A,B,C所对的边分别是a,b,c,已知c=2
10、,C=,ABC的面积等于,则a+b=4【考点】余弦定理;正弦定理【分析】由三角形的面积公式表示出三角形ABC的面积,将sinC的值代入求出ab的值,再由余弦定理列出关系式,利用完全平方公式变形后,将ab的值代入即可求出a+b的值【解答】解:SABC=absinC=ab=,ab=4,由余弦定理c2=a2+b22abcosC=a2+b2ab=(a+b)23ab,即4=(a+b)212,则a+b=4故答案为:411等比数列an的公比为q(q0),其前项和为Sn,若S3,S9,S6成等差数列,则q3=【考点】等比数列的性质;等差数列的性质【分析】由题意可得公比q1,根据S3,S9,S6成等差数列,可得
11、2S9=S3+S6,把等比数列的通项公式代入化简可得2q6q31=0,解方程求得q3 的值【解答】解:由题意可得公比q1,S3,S9,S6成等差数列,2S9=S3+S6,2=+,2q9q6q3=0,2q6q31=0,解得 q3=,q3=,故答案为12在ABC中角A,B,C对应边分别为a,b,c,若,那么c=【考点】平面向量数量积的运算;解三角形【分析】利用已知的等式可得到=,再由正弦定理得到=,能得出 A=B,a=b,把=+ 两边平方,且利用 =1,可得所求【解答】解:由题意得=cbcosA=1, BC=cacosB=1,=,再由正弦定理得=,sinAcosB=cosAsinB,A=B,a=b
12、又=+,=b2=c2+a2+2=c2+b22,c2=2,c=,故答案为13数列an的通项,其前n项和为Sn,则S30=【考点】数列的求和【分析】由an=n(cos2)=ncos可得数列是以3为周期的数列,且,代入可求【解答】解:an=n(cos2)=ncosS30=故答案为1514已知函数f(x)=满足对任意x1x2,都有0成立,则实数a的取值范围是【考点】分段函数的应用【分析】由任意x1x2,都有0成立,得函数为减函数,根据分段函数单调性的性质建立不等式关系即可【解答】解:f(x)满足对任意x1x2,都有0成立函数f(x)在定义域上为减函数,则满足,即,得0a,故答案为:二、解答题(本大题共
13、6小题,共90分)15已知函数f(x)=(1)求f()的值;(2)当x0,)时,求g(x)=f(x)+sin2x的最大值和最小值【考点】三角函数的最值;三角函数中的恒等变换应用【分析】(1)利用三角恒等变换化简函数的解析式,可得f()的值(2)由条件利用正弦函数的定义域和值域,求得g(x)的最大值和最小值【解答】解:(1),(2),当时,g(x)有最大值;当x=0时,g(x)有最小值116如图,在正方体ABCDA1B1C1D1中,E、F为棱AD、AB的中点()求证:EF平面CB1D1;()求证:平面CAA1C1平面CB1D1【考点】直线与平面平行的判定;平面与平面垂直的判定【分析】()欲证EF
14、平面CB1D1,根据直线与平面平行的判定定理可知只需证EF与平面CB1D1内一直线平行,连接BD,根据中位线可知EFBD,则EFB1D1,又B1D1平面CB1D1,EF平面CB1D1,满足定理所需条件;()欲证平面CAA1C1平面CB1D1,根据面面垂直的判定定理可知在平面CB1D1内一直线与平面CAA1C1垂直,而AA1平面A1B1C1D1,B1D1平面A1B1C1D1,则AA1B1D1,A1C1B1D1,满足线面垂直的判定定理则B1D1平面CAA1C1,而B1D1平面CB1D1,满足定理所需条件【解答】解:()证明:连接BD在正方体AC1中,对角线BDB1D1又因为E、F为棱AD、AB的中
15、点,所以EFBD所以EFB1D1又B1D1平面CB1D1,EF平面CB1D1,所以EF平面CB1D1()因为在正方体AC1中,AA1平面A1B1C1D1,而B1D1平面A1B1C1D1,所以AA1B1D1又因为在正方形A1B1C1D1中,A1C1B1D1,所以B1D1平面CAA1C1又因为B1D1平面CB1D1,所以平面CAA1C1平面CB1D117数列an中,an=32,sn=63,(1)若数列an为公差为11的等差数列,求a1;(2)若数列an为以a1=1为首项的等比数列,求数列am2的前m项和sm【考点】数列的求和;等差数列【分析】(1)由数列为等差数列,根据条件,用首项和公差分别表示通
16、项和前n项和建立方程组求解(2)由数列为等比数列,根据条件,用首项和公比分别表示通项和前n项和建立方程组求解【解答】解:(1),a1+(n1)11=an=32解得 a1=10(2)解得:q=2 n=6所以an2是首项为1,公比为4的等比数列Sm=18运货卡车以每小时x千米的速度匀速行驶130千米(50x100)(单位:千米/小时)假设汽油的价格是每升2元,而汽车每小时耗油(2+)升,司机的工资是每小时14元(1)求这次行车总费用y关于x的表达式;(2)当x为何值时,这次行车的总费用最低,并求出最低费用的值【考点】基本不等式在最值问题中的应用;函数模型的选择与应用【分析】(1)求出车所用时间,根
17、据汽油的价格是每升2元,而汽车每小时耗油(2+)升,司机的工资是每小时14元,可得行车总费用;(2)利用基本不等式,即可求得这次行车的总费用最低【解答】解:(1)行车所用时间为,根据汽油的价格是每升2元,而汽车每小时耗油(2+)升,司机的工资是每小时14元,可得行车总费用:y=(50x100)(2)y=26,当且仅当,即时,等号成立当时,这次行车的总费用最低,最低费用为元19在ABC中,已知tanAtanBtanAtanB=(1)求C的大小;(2)设角A,B,C的对边依次为a,b,c,若c=2,且ABC是锐角三角形,求a2+b2的取值范围【考点】正弦定理;三角函数中的恒等变换应用【分析】(1)
18、由已知中tanAtanBtanAtanB=,变形可得,由两角和的正切公式,我们易得到A+B的值,进而求出C的大小;(2)由c=2,且ABC是锐角三角形,再由正弦定理,我们可以将a2+b2转化为一个只含A的三角函数式,根据正弦型函数的性质,我们易求出a2+b2的取值范围【解答】解:(1)依题意:,即又0A+B,;(2)由三角形是锐角三角形可得,即由正弦定理得,=,从而则a2+b2的取值范围为:(,820设数列an为等比数列,数列bn满足bn=na1+(n1)a2+2an1+an,nN*,已知b1=m,其中m0()求数列an的首项和公比;()当m=1时,求bn;()设Sn为数列an的前n项和,若对
19、于任意的正整数n,都有Sn1,3,求实数m的取值范围【考点】等比数列;数列的求和;数列递推式【分析】(1)由已知中数列an为等比数列,我们只要根据bn=na1+(n1)a2+2an1+an,nN*,已知b1=m,求出a1,a2然后根据公比的定义,即可求出数列an的首项和公比(2)当m=1时,结合(1)的结论,我们不难给出数列an的通项公式,并由bn=na1+(n1)a2+2an1+an,nN*给出bn的表达式,利用错位相消法,我们可以对其进行化简,并求出bn;(3)由Sn为数列an的前n项和,及(1)的结论,我们可以给出Sn的表达式,再由Sn1,3,我们可以构造一个关于m的不等式,解不等式,即可得到实数m的取值范围在解答过程中要注意对n的分类讨论【解答】解:()由已知b1=a1,所以a1=mb2=2a1+a2,所以,解得,所以数列an的公比()当m=1时,bn=na1+(n1)a2+2an1+an,得所以,()因为,所以,由Sn1,3得,注意到,当n为奇数时,当n为偶数时,所以最大值为,最小值为对于任意的正整数n都有,所以,2m3即所求实数m的取值范围是m|2m32016年8月16日