ImageVerifierCode 换一换
格式:DOC , 页数:11 ,大小:2MB ,
资源ID:625180      下载积分:6 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-625180-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2016高考(新课标)数学(理)一轮全程复习构想练习:立体几何-7.DOC)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2016高考(新课标)数学(理)一轮全程复习构想练习:立体几何-7.DOC

1、课时作业48立体几何中的向量方法1(2014辽宁卷)如图,ABC和BCD所在平面互相垂直,且ABBCBD2,ABCDBC120,E,F分别为AC,DC的中点(1)求证:EFBC;(2)求二面角EBFC的正弦值图1解析:(1)(方法一)过E作EOBC,垂足为O,连OF.由ABCDBC可证出EOCFOC.所以EOCFOC,即FOBC.又EOBC,因此BC面EFO.又EF面EFO,所以EFBC.(方法二)由题意,以B为坐标原点,在平面DBC内过B作垂直BC的直线为x轴,BC所在直线为y轴,在平面ABC内过B作垂直BC的直线为z轴,建立如图所示空间直角坐标系易得B(0,0,0),A(0,1,),D(,

2、1,0),C(0,2,0)图2因而E,F,所以,(0,2,0),因此0.从而,所以EFBC.(2)(方法一)在图1中,过O作OGBF,垂足为G,连EG.由平面ABC平面BDC,从而EO面BDC,又OGBF,由三垂线定理知EGBF.因此EGO为二面角EBFC的平面角在EOC中,EOECBCcos30,由BGOBFC知,OGFC,因此tanEGO2,从而sinEGO,即二面角EBFC的正弦值为.(方法二)在图2中,平面BFC的一个法向量为n1(0,0,1)设平面BEF的法向量n2(x,y,z),又,.由得其中一个n2(1,1)设二面角EBFC大小为,且由题意知为锐角,则cos|cosn1,n2|,

3、因此sin,即所求二面角的正弦值为.2(2014新课标全国卷)如图,三棱柱ABCA1B1C1中,侧面BB1C1C为菱形,ABB1C.(1)证明:ACAB1;(2)若ACAB1,CBB160,ABBC,求二面角AA1B1C1的余弦值解析:(1)连接BC1,交B1C于点O,连接AO.因为侧面BB1C1C为菱形,所以B1CBC1,且O为B1C及BC1的中点又ABB1C,所以B1C平面ABO.由于AO平面ABO,故B1CAO.又B1OCO,故ACAB1.(2)因为ACAB1,且O为B1C的中点,所以AOCO.又因为ABBC,所以BOABOC.故OAOB,从而OA,OB,OB1两两互相垂直以O为坐标原点

4、,的方向为x轴正方向,|为单位长,建立如图所示的空间直角坐标系Oxyz.因为CBB160,所以CBB1为等边三角形又ABBC,则A,B(1,0,0),B1,C.,.设n(x,y,z)是平面AA1B1的法向量,则 即所以可取n(1,)设m是平面A1B1C1的法向量,则同理可取m(1,)则cosn,m.所以二面角AA1B1C1的余弦值为.3(2014陕西卷)四面体ABCD及其三视图如图所示,过棱AB的中点E作平行于AD,BC的平面分别交四面体的棱BD,DC,CA于点F,G,H.(1)证明:四边形EFGH是矩形;(2)求直线AB与平面EFGH夹角的正弦值解析:(1)由该四面体的三视图可知,BDDC,

5、BDAD,ADDC,BDDC2,AD1.由题设,BC平面EFGH,平面EFGH平面BDCFG,平面EFGH平面ABCEH,BCFG,BCEH,FGEH.同理EFAD,HGAD,EFHG,四边形EFGH是平行四边形又ADDC,ADBD,AD平面BDC,ADBC,EFFG,四边形EFGH是矩形(2)解法一如图,以D为坐标原点建立空间直角坐标系,则D(0,0,0),A(0,0,1),B(2,0,0),C(0,2,0),(0,0,1),(2,2,0),(2,0,1)设平面EFGH的法向量n(x,y,z),EFAD,FGBC,n0,n0,得取n(1,1,0),sin|cos,n|.解法二如图,以D为坐标

6、原点建立空间直角坐标系,则D(0,0,0),A(0,0,1),B(2,0,0),C(0,2,0),E是AB的中点,F,G分别为BD,DC的中点,得E,F(1,0,0),G(0,1,0),(1,1,0),(2,0,1)设平面EFGH的法向量n(x,y,z),则n0,n0,得取n(1,1,0),sin|cos,n|.4(2014天津卷)如图,在四棱锥PABCD中,PA底面ABCD,ADAB,ABDC,ADDCAP2,AB1,点E为棱PC的中点(1)证明:BEDC;(2)求直线BE与平面PBD所成角的正弦值;(3)若F为棱PC上一点,满足BFAC,求二面角FABP的余弦值解析:解法一依题意,以点A为

7、原点建立空间直角坐标系(如下图),可得B(1,0,0),C(2,2,0),D(0,2,0),P(0,0,2)由E为棱PC的中点,得E(1,1,1)(1)向量(0,1,1),(2,0,0),故0.所以,BEDC.(2)向量(1,2,0),(1,0,2)设n(x,y,z)为平面PBD的法向量则即不妨令y1,可得n(2,1,1)为平面PBD的一个法向量,于是有cosn,.所以,直线BE与平面PBD所成角的正弦值为.(3)向量(1,2,0),(2,2,2),(2,2,0),(1,0,0)由点F在棱PC上,设,01.故(12,22,2)由BFAC,得0,因此,2(12)2(22)0,解得.即(,)设n1

8、(x,y,z)为平面FAB的法向量,则即不妨令z1,可得n1(0,3,1)为平面FAB的一个法向量取平面ABP的法向量n2(0,1,0),则cosn1,n2.易知,二面角FABP是锐角,所以其余弦值为.解法二(1)如图,取PD中点M,连接EM,AM.由于E,M分别为PC,PD的中点,故EMDC,且EMDC,又由已知,可得EMAB且EMAB,故四边形ABEM为平行四边形,所以BEAM.因为PA底面ABCD,故PACD,而CDDA,从而CD平面PAD,因为AM平面PAD,于是CDAM,又BEAM,所以BECD.(2)连接BM,由(1)有CD平面PAD,得CDPD,而EMCD,故PDEM,又因为AD

9、AP,M为PD的中点,故PDAM,可得PDBE,所以PD平面BEM,故平面BEM平面PBD.所以,直线BE在平面PBD内的射影为直线BM,而BEEM,可得EBM为锐角,故EBM为直线BE与平面PBD所成的角依题意,有PD2,而M为PD中点,可得AM,进而BE.故在直角三角形BEM中,tanEBM,因此sinEBM.所以,直线BE与平面PBD所成角的正弦值为.(3)如图,在PAC中,过点F作FHPA交AC于点H.因为PA底面ABCD,故FH底面ABCD,从而FHAC.又BFAC,得AC平面FHB,因此ACBH.在底面ABCD内,可得CH3HA,从而CF3FP.在平面PDC内,作FGDC交PD于点G,于是DG3GP.由于DCAB,故GFAB,所以A,B,F,G四点共面由ABPA,ABAD,得AB平面PAD,故ABAG.所以PAG为二面角FABP的平面角在PAG中,PA2,PGPD,APG45,由余弦定理可得AG,cosPAG.所以,二面角FABP的余弦值为.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3