1、课时作业57圆锥曲线的综合问题1(2014浙江卷)如图,设椭圆C:1(ab0),动直线l与椭圆C只有一个公共点P,且点P在第一象限(1)已知直线l的斜率为k,用a,b,k表示点P的坐标;(2)若过原点O的直线l1与l垂直,证明:点P到直线l1的距离的最大值为ab.解析:(1)设直线l的方程为ykxm(k0),由消去y得(b2a2k2)x22a2kmxa2m2a2b20.由于l与C只有一个公共点,故0,即b2m2a2k20,解得点P的坐标为.又点P在第一象限,故点P的坐标为P.(2)由于直线l1过原点O且与l垂直,故直线l1的方程为xky0,所以点P到直线l1的距离d,整理得d,因为a2k22a
2、b,所以ab,当且仅当k2时等号成立所以,点P到直线l1的距离的最大值为ab.2(2014江西卷)如图,已知双曲线C:y21(a0)的右焦点为F,点A,B分别在C的两条渐近线上,AFx轴,ABOB,BFOA(O为坐标原点)(1)求双曲线C的方程;(2)过C上一点P(x0,y0)(y00)的直线l:y0y1与直线AF相交于点M,与直线x相交于点N.证明:当点P在C上移动时,恒为定值,并求此定值解析:(1)设F(c,0),因为b1,所以c,直线OB的方程为yx,直线BF的方程为y(xc),解得b.又直线OA的方程为yx,则A,kAB.又因为ABOB,所以1,解得a23,故双曲线C的方程为y21.(
3、2)由(1)知a,则直线l的方程为y0y1(y00),即y.因为直线AF的方程为x2,所以直线l与AF的交点M;直线l与直线x的交点为N,.则,因为P(x0,y0)是C上一点,则y1,代入上式得,所求定值为.3(2014山东卷)已知抛物线C:y22px(p0)的焦点为F,A为C上异于原点的任意一点,过点A的直线l交C于另一点B,交x轴的正半轴于点D,且有|FA|FD|.当点A的横坐标为3时,ADF为正三角形(1)求C的方程;(2)若直线l1l,且l1和C有且只有一个公共点E.()证明直线AE过定点,并求出定点坐标;()ABE的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由解析:
4、由题意知F.设D(t,0)(t0),则FD的中点为.因为|FA|FD|,由抛物线的定义知3|t|,解得t3p或t3(舍去)由3,解得p2.所以抛物线C的方程为y24x.(2)()由(1)知F(1,0),设A(x0,y0)(x0y00),D(xD,0)(xD0),因为|FA|FD|,则|xD1|x01,由xD0得xDx02,故D(x02,0)故直线AB的斜率kAB.因为直线l1和直线AB平行,设直线l1的方程为yxb,代入抛物线方程得y2y0,由题意0,得b.设E(xE,yE),则yE,xE.当y4时,kAE,可得直线AE的方程为yy0(xx0),由y4x0,整理可得y(x1),直线AE恒过点F
5、(1,0)当y4时,直线AE的方程为x1,过点F(1,0)所以直线AE过定点F(1,0)()由()知直线AE过焦点F(1,0),所以|AE|AF|FE|(x01)x02.设直线AE的方程为xmy1,因为点A(x0,y0)在直线AE上,故m.设B(x1,y1)直线AB的方程为yy0(xx0),由于y00,可得xy2x0,代入抛物线方程得y2y84x00.所以y0y1,可求得y1y0,x1x04.所以点B到直线AE的距离为d4.则ABE的面积S416,当且仅当x0,即x01时等号成立所以ABE的面积的最小值为16.4(2014福建卷)已知双曲线E:1(a0,b0)的两条渐近线分别为l1:y2x,l
6、2:y2x.(1)求双曲线E的离心率;(2)如图,O为坐标原点,动直线l分别交直线l1,l2于A,B两点(A,B分别在第一、四象限),且OAB的面积恒为8.试探究:是否存在总与直线l有且只有一个公共点的双曲线E?若存在,求出双曲线E的方程;若不存在,说明理由解析:方法一(1)因为双曲线E的渐近线分别为y2x,y2x,所以2,所以2,故ca,从而双曲线E的离心率e.(2)由(1)知,双曲线E的方程为1.设直线l与x轴相交于点C.当lx轴时,若直线l与双曲线E有且只有一个公共点,则|OC|a,|AB|4a,又因为OAB的面积为8,所以|OC|AB|8,因此a4a8,解得a2,此时双曲线E的方程为1
7、.若存在满足条件的双曲线E,则E的方程只能为1.以下证明:当直线l不与x轴垂直时,双曲线E:1也满足条件设直线l的方程为ykxm,依题意,得k2或k2,则C.记A(x1,y1),B(x2,y2)由得y1,同理得y2.由SOAB|OC|y1y2|得,8,即m24|4k2|4(k24)由得,(4k2)x22kmxm2160.因为4k20,所以4k2m24(4k2)(m216)16(4k2m216),又因为m24(k24),所以0,即l与双曲线E有且只有一个公共点因此,存在总与l有且只有一个公共点的双曲线E,且E的方程为1.方法二(1)同解法一(2)由(1)知,双曲线E的方程为1.设直线l的方程为x
8、myt,A(x1,y1),B(x2,y2)依题意得m.由得y1,同理得y2.设直线l与x轴相交于点C,则C(t,0)由SOAB|OC|y1y2|8,得|t|8,所以t24|14m2|4(14m2)由得,(4m21)y28mty4(t2a2)0.因为4m212或k2.由得,(4k2)x22kmxm20,因为4k20,所以x1x2,又因为OAB的面积为8,所以|OA|OB|sinAOB8,又易知sinAOB,所以8,化简得x1x24.所以4,即m24(k24)由(1)得双曲线E的方程为1,由得,(4k2)x22kmxm24a20,因为4k20,直线l与双曲线E有且只有一个公共点当且仅当4k2m24(4k2)(m24a2)0,即(k24)(a24)0,所以a24,所以双曲线E的方程为1.当lx轴时,由OAB的面积等于8可得l:x2,又易知l:x2与双曲线E:1有且只有一公共点综上所述,存在总与l有且只有一个公共点的双曲线E,且E的方程为1.