1、课时作业59用样本估计总体一、选择题1样本中共有五个个体,其值分别为a,0,1,2,3.若该样本的平均值为1,则样本方差为()A.B.C. D2解析:由题可知样本的平均值为1,所以1,解得a1,所以样本的方差为(11)2(01)2(11)2(21)2(31)22,故选D.答案:D2从一堆苹果中任取10只,称得它们的质量如下(单位:克):12512012210513011411695120134则样本数据落在114.4,124.5)内的频率为()A0.2 B0.3C0.4 D0.5解析:依题意得,样本数据落在114.4,124.5)内的频率为0.4,选C.答案:C3如图所示是一样本的频率分布直方
2、图,则由图形中的数据,可以估计众数与中位数分别是()A12.512.5 B12.513C1312.5 D1313解析:根据频率分布直方图特点可知,众数是最高矩形的中点,由图可知为12.5,中位数是1013.答案:B4(2014长春调研)如图是依据某城市年龄在20岁到45岁的居民上网情况调查而绘制的频率分布直方图,现已知年龄在30,35),35,40)、40,45)的上网人数呈现递减的等差数列分布,则年龄在35,40)的网民出现的频率为()A0.04 B0.06C0.2 D0.3解析:由频率分布直方图可知,年龄在20,25)的频率为0.0150.05,25,30)的频率为0.0750.35,又年
3、龄在30,35),35,40),40,45)的频率成等差数列分布,所以年龄在35,40)的网民出现的频率为0.2.答案:C5甲、乙两位同学在高三的5次月考中数学成绩统计如茎叶图所示,若甲、乙两人的平均成绩分别是x甲,x乙,则下列叙述正确的是()Ax甲x乙;乙比甲成绩稳定Bx甲x乙;甲比乙成绩稳定Cx甲x乙;乙比甲成绩稳定Dx甲x乙;甲比乙成绩稳定解析:由题意可知,x甲(7277788692)81,x乙(7888889190)87.又由方差公式可得s(8172)2(8177)2(8178)2(8186)2(8192)250.4,s(8778)2(8788)2(8788)2(8791)2(8790
4、)221.6,因为ss,故乙的成绩波动较小,乙的成绩比甲稳定故选C.答案:C6(2014吉林长春四调)某中学高三年级从甲、乙两个班级各选出8名学生参加数学竞赛,他们取得的成绩(满分100分)的茎叶图如图,其中甲班学生成绩的平均分是86,乙班学生成绩的中位数是83,则xy的值为()A.9 B10C11 D13解析:观察茎叶图,甲班学生成绩的平均分是86,故x8,乙班学生成绩的中位数是83,故y5,xy13,故选D.答案:D二、填空题7(2014江苏南京、盐城一模)若一组样本数据2,3,7,8,a的平均数为5,则该组数据的方差s2_.解析:由5,得a5,所以s2(25)2(35)2(75)2(85
5、)2(55)2.答案:8某赛季,甲、乙两名篮球运动员都参加了11场比赛,他们每场比赛得分的情况用右图所示的茎叶图表示,若甲运动员的中位数为a,乙运动员的众数为b,则ab_.解析:由茎叶图可知,a19,b11,ab8.答案:89某地区为了解中学生的日平均睡眠时间(单位:h),随机选择了n位中学生进行调查,根据所得数据画出样本的频率分布直方图如图所示,且从左到右的第1个、第4个、第2个、第3个小长方形的面积依次构成公差为0.1的等差数列,又第一小组的频数是10,则n_.解析:设第1个小长方形的面积为S,则4个小长方形的面积之和为4S0.1,由题意知,4S0.11,S0.1.又0.1,n100.答案
6、:100三、解答题10(2014北京卷)从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表和频率分布直方图:组号分组频数10,2)622,4)834,6)1746,8)2258,10)25610,12)12712,14)6814,16)2916,18)2合计100(1)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12小时的概率;(2)求频率分布直方图中的a,b的值;(3)假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中的100名学生该周课外阅读时间的平均数在第几组(只需写出结论)解析:(1)根据频数分布表,100名
7、学生中课外阅读时间不少于12小时的学生共有62210名,所以样本中的学生课外阅读时间少于12小时的频率是10.9.从该校随机选取一名学生,估计其课外阅读时间少于12小时的概率为0.9.(2)课外阅读时间落在组4,6)的有17人,频率为0.17,所以a0.085.课外阅读时间落在组8,10)的有25人,频率为0.25,所以b0.125.(3)样本中的100名学生课外阅读时间的平均数在第4组11(2014新课标全国卷)从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:质量指标值分组75,85)85,95)95,105)105,115)115,125)频
8、数62638228(1)在下表中作出这些数据的频率分布直方图:(2)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?解析:(1)(2)质量指标值的样本平均数为800.06900.261000.381100.221200.08100.质量指标值的样本方差为s2(20)20.06(10)20.2600.381020.222020.08104.所以这种产品质量指标值的平均数的估计值为100,方差的估计值为104.(3)质量指标值不低于95的产品所占比
9、例的估计值为0.380.220.080.68.由于该估计值小于0.8,故不能认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定12(2014新课标全国卷)某市为了考核甲、乙两部门的工作情况,随机访问了50位市民根据这50位市民对这两部门的评分(评分越高表明市民的评价越高),绘制茎叶图如下:(1)分别估计该市的市民对甲、乙两部门评分的中位数;(2)分别估计该市的市民对甲、乙两部门的评分高于90的概率;(3)根据茎叶图分析该市的市民对甲、乙两部门的评价解析:(1)由所给茎叶图知,50位市民对甲部门的评分由小到大排序,排在第25,26位的是75,75,故样本中位数为75,所以该市的市民对甲部门评分的中位数的估计值是75.50位市民对乙部门的评分由小到大排序,排在第25,26位的是66,68,故样本中位数为67,所以该市的市民对乙部门评分的中位数的估计值是67.(2)由所给茎叶图知,50位市民对甲、乙部门的评分高于90的比率分别为0.1,0.16,故该市的市民对甲、乙部门的评分高于90的概率的估计值分别为0.1,0.16.(3)由所给茎叶图知,市民对甲部门的评分的中位数高于对乙部门的评分的中位数,而且由茎叶图可以大致看出对甲部门的评分的标准差要小于对乙部门的评分的标准差,说明该市市民对甲部门的评价较高、评价较为一致,对乙部门的评价较低、评价差异较大