ImageVerifierCode 换一换
格式:DOC , 页数:9 ,大小:960.50KB ,
资源ID:616074      下载积分:1 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-616074-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(天津市第一中学2021届高三数学下学期第四次月考试题.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

天津市第一中学2021届高三数学下学期第四次月考试题.doc

1、天津市第一中学2021届高三数学下学期第四次月考试题本试卷分为第卷(选择题)、第卷(非选择题)两部分,共150分,试用时120分钟考生务必将答案涂写在规定的位置上,答在试卷上的无效祝各位考生考试顺利!一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的1设全集,集合,则等于( )A B C D2设,则“”是“”的( )A充分不必要条件 B必要不充分条件C充要条件 D既不充分也不必要条件3函数的图象大致为( )A BC D4对一批产品进行了抽样检测,测量其净重(单位:克),将所得数据分为5组:,并整理得到如下频率分布直方图,已知样本中产品净重小于100克的个数是36,则样本中产品净重落

2、在区间内的个数为( )A90 B75 C60 D455已知函数,且,则、的大小关系为( )A B C D6球与棱长为的正四面体各条棱都相切,则该球的表面积为( )A B C D7已知抛物线上一点到其焦点的距离为5,双曲线的左顶点为且离心率为,若双曲线的一条渐近线与直线垂直,则双曲线的方程为( )A B C D8已知函数的图象与轴交点的横坐标构成一个公差为的等差数列,把函数的图象沿轴向左平移个单位,横坐标伸长到原来的2倍得到函数的图象,则下列关于函数的结论,其中所有正确结论的序号是( )函数是奇函数 的图象关于直线对称在上是增函数 当时,函数的值域是A B C D9已知函数对,总有,使成立,则的

3、范围是( )A B C D二、填空题:本大题共6小题,每小题5分,共30分10已知,是虚数单位,若,则的值为_11的展开式的常数项为_12设直线与圆相交于,两点,若,则_13甲箱子里装有3个白球、2个黑球,乙箱子里装有1个白球、2个黑球,这些球颜色外完全相同,每次游戏从这两个箱子里各随机摸出2个球,则一次游戏摸出的白球不少于2个的概率为_14已知,且,则的最小值为_15平行四边形中,为上的动点,则的最小值为_三、解答题:本大题共5小题,共75分解答应写出文说明、证明过程或演算步骤16的内角,所对的边分别为,已知()求;()若,且的面积为,求及17如图,四棱锥中,底面为平行四边形,底面,是棱的中

4、点,且,()求证:平面;()求二面角的大小;()如果是棱上一点,且直线与平面所成角的正弦值为,求的值18椭圆的离心率,()求椭圆的方程;(),分别是椭圆的左,右顶点,是椭圆的上顶点,是椭圆上除顶点外的任意一点,直线交轴于点,直线交于点,设的斜率为,的斜率为证明:为定值19设是各项均为正数的等差数列,是和的等比中项,的前项和为,()求和的通项公式;()设,数列的前项和为,使为整数的称为 “优数”,求区间上所有“优数”之和()求20已知()求在处的切线方程以及的单调区间;()对,有恒成立,求的最大整数解;()令,若两个零点分别为且为的唯一的极值点,求证:参考答案1B 2A 3D 4A 5D 6C

5、7D 8C 9B102 1115 12 13 14 1516【解】()因为,所以由正弦定理可得,即,而,所以,故()由()知,则,又的面积为,则,由余弦定理得,解得17证明:()连结在中,又底面,平面()如图建立空间直角坐标系,则,是棱的中点,所以,设为平面的法向,即,令,则,平面的法向量因为平面,是平面的一个法向量二面角为锐二面角,二面角的大小为()因为是在棱上一点,所以设,设直线与平面所成角为,平面的法向量,解得,即,18解析:(1)因为,所以,代入得,故椭圆的方程为(2)证明:因为,不为椭圆顶点,则直线的方程为,把代入,解得直线的方程为与联立解得由,三点共线知,得所以的斜率为,则(定值)19【详解】()解:设等差数列的公差为,因为,是和的等比中项,所以,即,解得,因为是各项均为正数的等差数列,所以,故,因为,所以,两式相减得:,当时,是以2为首项,2为公比的等比数列,()2036()两式相减得:,20【详解】解:(1)所以定义域为;所以切线方程为;,令解得令解得所以的单调递减区间为,单调递增区间为(2)等价于;,记,所以为上的递增函数,且,所以,使得即,所以在上递减,在上递增,且;所以的最大整数解为3(3),得,当,;所以在上单调递减,上单调递增,而要使有两个零点,要满足,即;因为,令,由,即:,而要证,只需证,即证:即:,只需证:,令,则令,则故在上递增,;故在上递增,;

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3